期刊文献+

非线性马斯京根模型参数优化的混沌模拟退火法 被引量:13

Application of Chaotic Simulated Annealing Algorithm to Parameter Optimization of Nonlinear Muskingum Model
下载PDF
导出
摘要 提出了用混沌模拟退火法估计非线性马斯京根模型参数的优化算法。该算法将混沌优化的粗搜索、细搜索的两阶段搜索规则与模拟退火的启发式规则相结合进行参数的优化估计,既保证了解的全局最优性,又保证了最优解的精度。通过实例计算,并与文献方法计算的结果对比分析,表明该方法具有适应性强、求解精度高的特点。 This paper presents an optimization algorithm based on chaotic simulated annealing algorithm, which is used to estimate the parameter of Nonlinear Muskingum model. The algorithm, combining large-scope search and fine search, two stage of chaotic optimization, with heuristic rule of simulated annealing, is used to estimate optimally the model parameter, which ensures the global optimization of the solution and the precision of optimum solution. Through calculation examples, and compared with the results of a document, it shows that this method is characterized by good usability and high precision.
出处 《水电能源科学》 2007年第1期30-33,共4页 Water Resources and Power
基金 山东农业大学科研基金资助项目(23091)
关键词 混沌模拟退火法 非线性马斯京根模型 参数优化 chaotic simulated annealing algorithm nonlinear Muskingum model parameter optimization
  • 相关文献

参考文献6

二级参考文献8

共引文献170

同被引文献90

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部