期刊文献+

机构综合的超混沌Rssler系统牛顿迭代法研究

The Research of 2D Hyperchaotic Mapping Newton Iterative Method to Mechanism Synthesis
下载PDF
导出
摘要 超混沌是现代科学的主要成就之一,扩展超混沌的应用对现代科学的发展有重要意义。工程中的许多问题都可以转化为非线性方程组的求解问题,牛顿迭代法是重要的一维及多维的迭代技术,其迭代本身对初始点非常敏感。应用超混沌修正的Rssler系统产生初始点,首次提出了基于超混沌状态方程的牛顿迭代法求解非线性方程组的新方法,它比基于混沌的牛顿迭代法求解效率更高。机构综合与近似综合实例表明该方法的正确性与有效性。 The discovery of dynamical hyperchaos is one of the main achievements in the modem science and how to expand its application has important significance for the further development of modern science. Many engineering questions can be transformed into nonlinear equations for finding their solutions, newton iterative method is an important technique to one dimensional and multidimensional variables and the iterative process exhibits sensitive dependence on initial guess point. A new method based on utilizing hyperchaofic modified Rǒssler systems to locate initial points to find all solutions of the nonlinear questions was firstly proposed and it has high solving efficiency compared with chaotic Chen systems. The nmnerical examples in linkage synthesis and approximate synthesis show that the method is correct and effective.
作者 何雅槐
机构地区 长沙正中药机厂
出处 《机械设计与研究》 CSCD 北大核心 2007年第1期31-33,共3页 Machine Design And Research
关键词 超混沌系统 Rǒssler系统 连杆机构 非线性方程组 hyperchaotic system rǒssler system linkage mechanism nonlinear equations
  • 相关文献

参考文献9

二级参考文献13

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部