期刊文献+

基于小波变换模极大值的自适应阈值图像去噪算法 被引量:4

Image denoising algorithm of adaptive threshold value based on wavelet transform modulus maximum
下载PDF
导出
摘要 依据白噪声小波变换性态与信号奇异性相比具有显著不同的特点,在大尺度下设置阈值,去掉噪声信号而保留图像细节信号引起的模极大值点。在阈值设置问题上,采用自适应阈值的方法,克服单一阈值不能在每级尺度上将信号与噪声作最大分离的缺点。实验表明,与单一阈值去噪方法相比,该方法不仅可以保留图像边缘信息,而且能提高去噪后图像的峰值信噪比2~5dB。 It has been proved that noise wavelet transform apparently differs from signal sigularty in that the modulus maximums caused by noise signal are removed and image details are preserved by setting thresholds in big scale. As for setting the threshold value, the application of the adaptive threshold value can overcome the weakness that the only one threshold value can not separate signal from noise in the each class dimensions. The experiment shows that this method can not only reserve the imagePs edge information, but also raise the imagers SNR in the top to 2-5 dB after being denoised.
作者 杨关良 刘磊
出处 《海军工程大学学报》 CAS 北大核心 2007年第1期44-47,共4页 Journal of Naval University of Engineering
关键词 小波变换 模极大值 自适应阈值 去噪 wavelet transform modulus maximum adaptive threshold value denoising
  • 相关文献

参考文献5

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 2CastlemanKR 著 朱志刚等译.数字图像处理[M].北京:电子工业出版社,1998.266-290. 被引量:41
  • 3李建平主编..小波分析与信号处理 理论、应用及软件实现[M].重庆:重庆出版社,1997:392.
  • 4彭玉华著..小波变换与工程应用[M].北京:科学出版社,1999:137.
  • 5MALLAT S,HWANG W L.Singularity detection and processing with wavelets[J].IEEE Transactions on Information Theory,1992,38(2):617-643. 被引量:1

二级参考文献66

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730. 被引量:1
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310. 被引量:1
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882. 被引量:1
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543. 被引量:1
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85. 被引量:1
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74. 被引量:1
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116. 被引量:1
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278. 被引量:1
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500. 被引量:1
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846. 被引量:1

共引文献292

同被引文献25

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部