期刊文献+

弹性压应力波作用下直杆动力失稳的差分解 被引量:4

Difference solution to dynamic instability of straight bars under elastic compression wave
下载PDF
导出
摘要 以受载端简支、远端固支弹性直杆为例,通过对直杆微元的动力平衡分析导出了直杆动力失稳的控制方程,这与用哈密顿原理得出的方程完全一致。利用差分方法求解了动力屈曲方程,解出了动力失稳模态以及临界力参数和动力特征参数的值。特别分析了随着动力特征参数由零增加到一定值后,由静力失稳模态过渡到动力失稳模态的过程。结果表明,对于等效长度直杆,动力失稳临界压力要远大于静力失稳的临界压力。 Taking the straight bars as an example, which is simply supported at the loading end and clamped at the other end, the governing equations for dynamic instability of bars derived by the analysis of the dynamic equilibrium for a bar element are the same as those obtained in terms of Hamiltonrs theorem. With the finite difference method, the dynamic buckling equations are solved and the dynamic instability mode and the values of the critical load parameter and the dynamic characteristic parameter are obtained. Especially, the process that the static instability mode transforms into the dynamic instability mode is simulated as the dynamic characteristic parameter increases to a certain value from zero. The result indicates that the critical load of dynamic instability is far more than that of static instability with regard to the equivalent length bars.
出处 《海军工程大学学报》 CAS 北大核心 2007年第1期1-4,9,共5页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目 面上项目(10272114)
关键词 弹性杆 应力波 动力失稳 差分解 特征参数 elastic bars compression wave dynamic instability difference solution characteristicparameter
  • 相关文献

参考文献6

二级参考文献39

共引文献38

同被引文献17

  • 1张三慧.大学物理学[M].北京:清华大学出版社,2005. 被引量:1
  • 2汪惠雄.材料力学[M].北京:人民教育出版社,1981. 被引量:1
  • 3Weichert R.Informationsdienst wissenschaft[J].Technische University Clausthal,2002(1):16-20. 被引量:1
  • 4苏翼林.材料力学[M].北京:高等教育出版社,1987.9-11. 被引量:19
  • 5DUFFY D G. The response of an infinite railroad track to a moving [J]. Vibration Mass. J. Appl, Mech. Trans. ASME, 1990,57:66-73. 被引量:1
  • 6LAI Y C, TING B Y. Dynamic response of beams on elastic foundation [J]. J. Struct. Div. ASCE, 1992, 118(3) 853-858. 被引量:1
  • 7YANG X M, CLEVELANDA R O. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging [J]. The Journal of the Acoustical Society of America, 2005,118: 113-123. 被引量:1
  • 8CHONAN. Moving harmonic load on an elastically supported Timoshenko beam [J].Z. Angew Math. Mech. , 2002, 78:9-15. 被引量:1
  • 9韩大伟,王安稳.弹性压应力波作用下矩形薄板动力屈曲解析解[J].工程力学,2012,29(11):12-15. 被引量:3
  • 10毛柳伟,王安稳,韩大伟,邓磊.考虑应力波效应时直杆塑性动力屈曲研究[J].华中科技大学学报(自然科学版),2012,40(12):85-87. 被引量:2

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部