期刊文献+

关于(f,т)-相容Hopf代数对(B,H)

On (f,τ)-Compatible Hopf Algebra Pair (B, H)
下载PDF
导出
摘要 该文定义了(f,τ)-相容Hopf代数对(B,H),利用这样的对(B,H),给出了左H-余模范畴HM的一个辫子张量子范畴,从而得到一个量子Yang-Baxter算子,并且通过扭曲Hopf代数B的乘法,构造出Yetter-Drinfeld范畴中H HYD的Hopf代数. In this paper, the author defines (f, τ)-compatible Hopf algebra pair (B, H). Using such a pair (B, H), the author obtains a new braided monoidal category, which is a submonoidal category of left H-comodules category ^HM, and obtains a kind of new quantum Yang-Baxt operators. The author also constructs a Hopf algebra in the Yetter-Drinfeld category H^HYD by twisting the multiplication of B.
作者 赵文正
出处 《数学物理学报(A辑)》 CSCD 北大核心 2007年第1期155-165,共11页 Acta Mathematica Scientia
基金 河南省教育厅自然科学基金(0510476001)资助
关键词 Yette-Drinfeld模范畴 余拟三角Hopf代数 量子Yang—Baxter算子 Yetter-Drifeld category Coquasitriangular Hopf algebra Quantum Yang-Baxter operator.
  • 相关文献

参考文献12

  • 1Yetter D N. Quantum group and representations of monoidal categories. Math Proc Cambridge Phil Soc, 1990, 108: 261-296 被引量:1
  • 2Joyal A, Street R. Braided tensor categories. Adv in Math, 1993, 102: 20-78 被引量:1
  • 3Radford D E. The structure of Hopf algebra with a projection.J Algebra, 1985, 92: 322-347 被引量:1
  • 4Majid S. Braided groups. J Pure and Applied Algebra, 1993, 86: 186-221 被引量:1
  • 5Majid S. Transmutation theory and rank for quantum braided groups. Math Proc Comb Phil Soc, 1993, 133: 45-70 被引量:1
  • 6赵文正.关于(f,T)-相容对(B,H)和_H^HYD中的Hopf代数[J].数学学报(中文版),2005,48(2):355-364. 被引量:1
  • 7Montgomery S. Hopf Algebra and Their Actions on Rings. Washington: American Mathematical Society, 1993 被引量:1
  • 8Sweedler M E. Hopf Algebra. New York: Benjamin, 1969 被引量:1
  • 9Doi Y, Takeuchi M. Multiplication alteration by two-cocycles the quantum view. Comm in Algebra, 1994, 22: 5715-5732 被引量:1
  • 10Doi Y. Braided bialgebra and quadratic bialgebra. Comm in Algebra, 1993, 21: 1731-1749 被引量:1

二级参考文献12

  • 1Yetter D. N., Quantum group and representations of monoidal categories, Math. Proc. Cambridge Phil Soc.,1990, 108: 261-296. 被引量:1
  • 2Radford D. E., The structure of Hopf algebra whit a projection, J. Algebra, 1985, 92: 322-347. 被引量:1
  • 3Majid S., Braided groups, J. Pure and Applied Algebra, 1993, 86: 186-221. 被引量:1
  • 4Majid S., Cross product by braided groups and bosonigation, J. Algebra, 1994, 163: 165-190. 被引量:1
  • 5Majid S., Transmutation theory and rank for quantum braided groups, Math. Proc. Comb. Phil. Soc., 1993,133: 45-70. 被引量:1
  • 6Montgomery S., Hopf algebra and action on rings, Providence: American Mathematical Society, 1993. 被引量:1
  • 7Sweedler M. E., Hopf algebra, New York: Benjamin, 1969. 被引量:1
  • 8Radford D. E., Minimal quasitriangular Hopf algebra, J. Algebra, 1993, 157: 285-315. 被引量:1
  • 9Doi Y., Braided bialgebra and quadratic bialgebra, Comm. in Algebra, 1993, 21: 1731-1749. 被引量:1
  • 10Chen H. X., Quasitrangular structures of bicrossed coproducts, J. Algebra, 1998, 204: 504-531. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部