期刊文献+

基于曲线波变换的图像分解 被引量:2

Image Decomposition by Curvelet Transform
下载PDF
导出
摘要 将图像分解为卡通部分(有界变差部分)和震荡部分(文本部分)是近年来图像处理的一个重要问题.图像的卡通部分是由一个有界变差(BV)函数来刻画,相应的将BV罚项合并到变分泛函中需要解偏微分方程.Daubechies用B11(L1)项代替BV罚项并且用小波解变分问题.按照她的方法,我们通过设计一种数字曲线波算法和一种依赖于尺度的阈值规则,从而得到了一种有效的基于数字曲线波变换的图像分解算法.我们可以看出该算法对噪声具有很强的鲁棒性并且能使图像边缘保持稳定. Recent years, decomposing an image into cartoon component (bounded variation component ) and oscillating component (texture component) is an important problem in the field of image processing.The cartoon component of an image is modeled by a bounded variation (BV) function;the corresponding incorporation of BV penalty terms in the variational functional leads to solve PDE equations. Daubechies replaced the BV penalty term by a Besov term and wrote the problem in a wavelet framework. Following her ideas, we propose a new image decomposition algorithm based on the digital curvelet transform. By designing a digital curvelet transform algorithm and a scale-dependent thresholding role, elegant and numerically efficient schemes are obtained. We can see that this approach is very robust to additive noise and can keep the image edges stable.
作者 白键 冯象初
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第1期123-126,共4页 Acta Electronica Sinica
关键词 图像分解 脊波 曲线波 负Hilbert-Sobolev空间 BESOV空间 总变差最小 image decomposition ridgelet curvelet negative Hilbert-Sobolev space Besov space total variation minimization
  • 相关文献

参考文献16

  • 1Rudin L I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268. 被引量:1
  • 2Meyer Y.Oscillating patterns in image processing and nonlinear evolution equations[R].Boston,USA:American Mathematical Society,2001. 被引量:1
  • 3Vese L A,Osher S J.Modeling textures with total variation minimization and oscillating patterns in image processing[J].Journal of Scientific Computing,2003,19(1/3):553-572. 被引量:1
  • 4Aujol J F,Chambolle A.Dual norms and image decomposition models[J].International Journal of Computer Vision,2005,63(1):85-104. 被引量:1
  • 5Levine S E.An adaptive variational model for image decomposition[OL].http://ddma.lanl.gov/public/speaker/2005-03-21713h30.shtml. 被引量:1
  • 6Lieu L,Vese L A.Image restoration and decomposition via bounded total variation and negative Hilber-Sobolev spaces[OL].http://www.math.ucla.edu/~llieu/ams-meeting1009-slides.pdf. 被引量:1
  • 7Chan T F,Esedoglu S,Frederick E P.Image decomposition combining staircase reduction and texture extraction[OL].http://www.math.ucla.edu/applied/cam/. 被引量:1
  • 8Daubechies I,Teschke G.Variational image restoration by means of wavelets:Simultaneous decomposition,deblurring,and denoising[J].Applied and Computational Harmonic Analysis,2005,19(1):1-16. 被引量:1
  • 9Candes E J,Donoho D L.Curvelets-A Surprising effective nonadaptive representation for objects with edges[A].Curve and Surface Fitting[C].Nashville:Vanderbilt University Press,1999. 被引量:1
  • 10Donoho D L.Orthonormal ridgelet and linear singularities[J].SIAM Journal on Mathematical Analysis,2000,31(5):1062-1099. 被引量:1

二级参考文献10

  • 1[1]Donoho, D. L., Orthonormal ridgelets and linear singularities, SIAM J. Mathematical Analysis, 2000, 31(5): 1062-1099. 被引量:1
  • 2[2]Do, M. N., Vetter, M., The finite ridgelet transform for image representation, IEEE Trans. Image Processing, 2003, 12(1): 16-28. 被引量:1
  • 3[3]Averbuch, A., Coifman, R., Donoho, D. L. et al., Fast Slant Stack: A notion of Radon transform for data in a Cartesian Grid which is rapidly computible, algebraically exact, geometrically faithful and invertible, http://www-stat.stanford.edu/~donoho/Reports. 被引量:1
  • 4[4]Donoho, D. L., Flesia, A. G., Digital ridgelet transform based on true ridge functions, http://www.stat.Stanford.edu/donoho/Report. 被引量:1
  • 5[5]Mallat, S., A Wavelet Tour of Signal Processing (Translated by Yang Lihua et al.), Beijing: China Machine Press, 2003. 被引量:1
  • 6[6]Feng Xiangchu, Gan Xiaobing, Song Guoxiang, Numerical Functions and Wavelet Analysis, Xidian University Press, 1997. 被引量:1
  • 7[7]Beylkin, G., Discrete radon tansform, IEEE Tans. ASSP, 1987, 35(1): 162-172. 被引量:1
  • 8[8]Auscher, P., Weiss, G., Wickerhauser, M. V., Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. Wavelets: A tutorial in Theory and Applications, Boston: Academic Press, 1992, 237-256. 被引量:1
  • 9[9]Grochenig, K., Acceleration of frame algorithm, IEEE Trans. Signal Processing, 1993, 41(12): 3331-3340. 被引量:1
  • 10[10]Starck, J. L., Candes, E. J., Donoho, D. L., The curvelet transform for image denoising, IEEE Trans. Image Processing, 2002, 11(6): 670-684. 被引量:1

共引文献1

同被引文献14

  • 1Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations [M] //Providence, Rhode Island: American Mathematical Society, 2001. 被引量:1
  • 2Chen S, Donoho D, Saunder M. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing, 1998, 20 (1): 33-61. 被引量:1
  • 3Starck J L, Donoho D, Candes E. Astronomical image representation by the curvelet transform [J]. Astronomy & Astrophysics, 2003, 398(2): 785-800. 被引量:1
  • 4Starck J L, Elad M, Donoho D L. Image decomposition: separation of texture from piecewise smooth content [C] // Proceedings of SPIE, San Diego, California, 2003, 5207:571-582. 被引量:1
  • 5Aujol J F, Chambolle A. Dual norms and image decomposition models [J]. International Journal of Computer Vision, 2005, 63(1) : 85-104. 被引量:1
  • 6Aujol J F, Aubert G, Blanc-Feraud L, et al. Image decomposition into a bounded variation component and an oscillating component [J]. Journal of Mathematical Imaging and Vision, 2005, 22(1): 71-88. 被引量:1
  • 7Vese L, Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing [J]. Journal of Scientific Computing, 2003, 19 (1) : 553-572. 被引量:1
  • 8Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H^-1 norm [J]. Journal of Multiscale Modeling and Simulation, 2003,1(3) :349-370. 被引量:1
  • 9Candes E J, Donoho D L. Curvelets: a surprisingly effective nonadaptive representation for objects with edges [R]. Stanford: Stanford University, 1999, 1-16. 被引量:1
  • 10Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C^2 singularities [R]. Pasadena, California: California Institute of Technology, 2002 : 1-68. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部