摘要
本文考虑C^n中单位多圆柱上和一般复Banach空间中单位球上的正规化双全纯α(0■α<1)次的殆β(-π/2<β<π/2)型螺形映照以及α(0<α<1)次的β(-π/2<β<π/2)型螺形映照f(其中x=0是f(x)-x的k+1阶零点),研究了它们的构造,并得到其齐次展开式的精细估计.所得的结果推广了以前相应的结论.
In this paper, we consider a normalized biholomorphic almost spirallike mapping of type β(-π/2〈β〈π/2) and order α(0 〈 α 〈 1) or a normalized biholomorphic spirallike mapping of type β(-π/2〈β〈π/2) and order α (0 〈 α 〈 1) ] defined on the unit polydisk of C^n and the unit ball in a complex Banach space, where x = 0 is a zero of order k + 1 of f(x) - x. We investigate its construction, and the refined estimation of homogeneous expansion for f(x) is obtained. Our result extends the corresponding known conclusions.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第2期393-400,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10571164)
教育部博士点基金(20050358052)
广东省自然科学基金(06301315)
广东湛江师范学院博士专项研究资助项目(Z0420)
关键词
k+1阶零点
α次的殆β型螺形映照
α次的β型螺形映照
Zero of order k q- 1
almost spirallike mapping of type β and order α
spirallike mapping of type β and order α