期刊文献+

模糊概率神经网络模型在水质评价中的应用 被引量:10

Fuzzy Probabilistic Neural Network Water Quality Evaluation Model and Its Application
下载PDF
导出
摘要 鉴于水质类型和分级标准存在模糊性,将模糊数学中的相对隶属度理论和概率神经网络相结合,构建了模糊概率神经网络水质评价模型(FPNN)。阐明了该模型的构建方法,提出了基于指标相对隶属度矩阵插值构建训练样本的方法,并将该模型应用于实际水质评价。通过与综合评判法、属性识别法和BP网络法的比较,验证了该模型操作简便,评价结果客观可靠。 Considering the uncertainty of indexes for evaluating water quality and the standard of classification, Fuzzy Probabilistic Neural Network Model (FPNN) was proposed by combining the relative membership grade in fuzzy mathematics and Probabilistic Neural Network (PNN). The process of this model was clarified, and the method of establishing the studied data based on relative membership grade matrix was brought forward. Finally the model was applied to the actual water quality evaluation. The result indicates that the proposed method is easy to operate and the outcomes is objective and credible compared with those by i.ntegrated evaluating method, attribute recognition model and BP network.
出处 《水文》 CSCD 北大核心 2007年第1期36-39,25,共5页 Journal of China Hydrology
基金 国家自然科学基金项目(N40101005)资助
关键词 模糊数学 相对隶属度 概率神经网络 水质评价 fuzzy mathematics relative membership grade probabilistic neural network water quality evaluation
  • 相关文献

参考文献19

二级参考文献63

共引文献510

同被引文献110

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部