期刊文献+

一类延迟微分方程的数值霍普夫分支分析 被引量:2

Analysis of numerical Hopf bifurcation of a delay differential equation
下载PDF
导出
摘要 研究一个带有延迟的逻辑方程.通过分支分析可以发现当系统参数取一些特殊值的时候出现了霍普夫分支.证明了当参数取λ=λ+O(hp)时,产生数值霍普夫分支,这里λ是精确的霍普夫分支值,h和p分别是相应的数值方法的步长与阶.数值例子验证了所给的结论. A delay logistic equation is considered. The bifurcation analysis of the model shows that Hopf bifurcation can occur as the parameter crosses some critical values. It is shown that the numerical hopf bifurcation can occur as parameter λ = λ* + O (h^p ), where λ* is precise hopf bifurcation value, h is the step length of numerical method and p is the order. At last, some numerical tests are made to verify our above conclusion.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第1期19-23,共5页 Journal of Natural Science of Heilongjiang University
关键词 逻辑方程 霍普夫分支 延迟微分方程 logistic equation Hopf bifurcation delay differential equation
  • 相关文献

参考文献4

  • 1VOLKER WULF.Numerical analysis of delay differeutial equations undergoing a Hopf bifurcation[D].Manchester Center for Computational Mathematics,1999.42-98. 被引量:1
  • 2NEVILLE J FORD,VOLKER WULF.The use of boundary locus plots in the identification of bifurcation point in numerical approximation pf Delay Differential Equations[J].JCAM,1999,111:153-162. 被引量:1
  • 3GUGLIELMI N,HAIRER E.Geometric proofs of numerical stability for delay equations[J].IMA J Numer Anal,2001,21:439 -450. 被引量:1
  • 4李庆扬等编著..数值计算原理[M].北京:清华大学出版社,2000:461.

同被引文献13

  • 1KULENOVI M R S, LADAS G, SFICAS Y G. Global attraetivity in Nicholson' s blowflies[ J]. Applicable Analysis, 1992, 43:109 -124. 被引量:1
  • 2KOCIC V L J, LADAS G. Oscillation and global attraetivity in a discrete model of Nieholson' s blowflies[ J]. Applicable Analysis, 1990, 38 : 21 -31. 被引量:1
  • 3WEI Jun-jie, LI M Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation[ J]. Nonlinear Analysis, 2005, 60:1357 - 1367. 被引量:1
  • 4BEREZANSKY L, BRAVERMAN E, IDELS L. Nicholson' s blowflies differential equations revisited : main results and open problems [ J ]. Ap- plied Mathematical Modelling, 2010, 34:1405 -1417. 被引量:1
  • 5WANG Qiu-bao, LI Dong-song, LIU Ming-zhu. Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations [ J ] Chaos, Solitons & Fractals, 2009, 42 (5) : 3087 -3099. 被引量:1
  • 6ZHANG Chun-rui, ZHENG Bao-dong. Stability and bifurcation of a two-dimension discreten neural network model with multi-delays[ J ]. Chaos Solitons & Fractals, 2007, 31 (5) : 1232 -1242. 被引量:1
  • 7HALE J K, VERDYN S M. Introduction to functional differential equations[ M]. New York: Springer Verlag, 1993. 被引量:1
  • 8IOOSS G. Bifureation of maps and applieations[ M ]. New York: North Holland Publishing Company, 1979:229 -232. 被引量:1
  • 9魏俊杰,黄启昌.Hopf bifurcation of sunflower equation parametrized by delay[J].Chinese Science Bulletin,1995,40(12):981-983. 被引量:1
  • 10张向华.具双时滞的Nicholson果蝇系统的动力学性质[J].哈尔滨工业大学学报,2011,43(6):70-75. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部