期刊文献+

一种自适应的基于局部小波系数特征的遥感图像融合方法 被引量:6

An Adaptive Remote Sensing Images Fusion Method Based on Local Feature of Wavelet Transform
下载PDF
导出
摘要 光谱保持和高分辨率保留是影像融合的两个重要问题。本文提出了一种自适应的基于局部小波系数特征的遥感影像融合方法。该方法在对多光谱影像进行IHS变换的基础上,对多光谱的I分量和高分辨率的全色影像分别进行小波多分辨率分析,而后对分解得到的近似分量以及各层各方向的细节分量利用移动模板逐一提取对应的小波系数矩阵的局部特征,采用本文提出的自适应融合准则在小波域进行影像融合,最后通过小波逆变换得到新的I′分量,与H,S分量一起还原到RGB空间,最终得到融合后的高分辨率多光谱彩色图像。本文采用一组TM多光谱图像和SPOT全色图像数据进行融合实验,利用标准差、熵,光谱扭曲度等5个重要评价指标对融合效果进行数理分析。其实验融合图像的目视效果和统计指标均优于IHS融和方法和小波融合方法。 he Spectral characteristics preservation and the high spatial resolution retention are two key issues in image fusion. A new adaptive remote sensing image fusion algorithm based on traditional IHS transform and wavelet transform was proposed. The original I element of IHS and SPOT image were decomposed into multi-resolution representation by using wavelet transform. The approximatied images and detail images resulting from wavelet transform were infused in each level of different input resources based on local coefficients feature. This paper proposed fusion rules aiming at the approximated images and detail images respectively. The resultant image can be obtained by performing inverse wavelet transform and inverse IHS transform. We used 5 indices to assess the new method comparing with the usual IHS+ Wavelet fusion method. A set of TM band images and a SPOT image were used in our test, the experimental results show that the effect of our method is more satisfactory.
作者 宋杨 万幼川
出处 《遥感信息》 CSCD 2007年第1期3-6,I0001,共5页 Remote Sensing Information
基金 国家自然科学基金项目(资助号:60175022)
关键词 图像融合 小波变换 IHS变换 局部特征 TM影像 image fusion wavelet transform IHS transform local feature TM image
  • 相关文献

参考文献10

二级参考文献31

  • 1章毓晋.图像处理和分析[M].清华大学出版社,1999,3.. 被引量:146
  • 2KennthRCastleman.数字图像处理[M].北京:电子工业出版社,1998.. 被引量:1
  • 3Donoho D L. Nonlinear Wavelet Methods for Recovery of Signals,Densities, and Spectra from Indirect and Noisy Dat, Prec. of Symposia in Applied Mathematics, vol 47,1993. 被引量:1
  • 4Donoho D L. Adapdng to Unknown Smoothness via Wavelet Shrinkage [J]. J. Amer. Stat. Assoc. 1995. 被引量:1
  • 5DeVore R A, J Lucier B. Fast Wavelet Techniques for Near-Optimal Image Processing [A]. Proc IEEE Mil. Commun. CONF., IEEE Communications Society[C]. 1992. 被引量:1
  • 6Sanker B. et al. Multiresolution Biological Transient Extraction Applied to Respiratory Crackles [J]. Comput. Boil. Med. 1996.26(1) :25-39. 被引量:1
  • 7J Weaver. Filtering noise from images with wavelet transform [J].Magnetic Resonance in Medicine, 21,288-295,1995. 被引量:1
  • 8Hummel R. Reconstruction from Zero-crossings in Scale Space [J].IEEE Trans, 1989. ASSP-37(12). 被引量:1
  • 9Coinfman R R, Donoho D L. Ideal Translation Invariant Denoiaing[ C]. Springer Verlag, 1995. 被引量:1
  • 10Donoho D L. Wavelet Analysis [J]. IEEE Spectram, 1996,33(10). 被引量:1

共引文献89

同被引文献78

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部