摘要
通过对爆炸载荷下具有1根加强筋的固支矩形加筋板的有限元模拟,探讨了抗爆加筋板结构优化设计方法,分析了加筋板的失效模式以及加强筋相对刚度和冲击载荷强度对加筋板失效模式的影响,指出了失效模式Ⅰ下的3种变形模态以及失效模式Ⅱ下的2种子失效模式,得到了失效模式Ⅰ下加强筋和加筋板最大挠度的近似计算公式,提出了单根加筋板的两种失效模式的判别条件,并对具有1根加强筋的固支矩形加筋板抗爆结构进行了优化设计。结果表明,通过数值模拟或模型实验可以求得任意加筋板结构由发生塑性大变形到发生破损的临界条件,从而确定抗爆性能最强时加筋板的质量与加强筋横截面尺寸及间距间的关系,实现对抗爆加筋板结构的优化设计。
In order to explore an optimization design method to design explosion protection stiffened plates, finite element modeling was carried out to simulate the response of clamped rectangle single stiffened plates subjected to blast load. Failure modes of the stiffened plates were analyzed. The influence of relative rigidity and intensity of the blast load was studied. The 3 types deformation modes of failure mode Ⅰ and 2 types of sub-failure mode of failure mode Ⅱ were put forward. The approximate formula to predict the largest deflection of stiffener and the stiffened plates and the criteria of the 2 failure modes were proposed. At last, the optimization design of single stiffened plates subjected to blast load was performed. The results show that it is feasible to optimize the structure of explosion protection stiffened plates, when the critical conditions of transformation from large plastic deformation (failure mode Ⅰ ) to breakage damage (failure mode Ⅱ ) are acquired by numerical simulation or experiment. The relationship between the mass of stiffened plates and the dimension and space of the stiffeners can be derived from these critical conditions, under the condition that the explosion protection capability of the stiffened plate is best. Thereby the optimization design of explosion protection stiffened plates can be achieved.
出处
《爆炸与冲击》
EI
CAS
CSCD
北大核心
2007年第1期26-33,共8页
Explosion and Shock Waves
关键词
固体力学
失效模式
有限元分析
加筋板
爆炸载荷
solid mechanics failure mode
finite element method
stiffened plate
blast load