期刊文献+

SrTiO_3掺杂La-K-Mn-O系统的电磁性质 被引量:3

Magnetic and electronic transport properties of SrTiO_3-doped La-K-Mn-O system
原文传递
导出
摘要 用溶胶-凝胶制备了La0.833K0.167MnO3-SrTiO3(LKMO/STO)系列样品,并研究了它们的结构、磁性和输运特性.X射线衍射实验表明,1200℃烧结的LKMO/STO(STLK12)是一个均匀的固溶相.其电阻率表现为绝缘体的行为,而纯La0.833K0.167MnO3(LKMO)样品随温度的升高则有金属-绝缘体转变.在低场下(μ0H=0.02T),对STLK12样品,当温度从220K降低到4K时,磁电阻从0.2%升高到11%.在高场下(μ0H=5.5T),随着温度降低,磁电阻几乎是线性增大.在4.2K时,达到65%.比纯LKMO样品40%的磁电阻高出了25%.我们用晶界处的自旋极化隧穿效应定性地解释了这种增强的磁电阻效应. La0.833 K0.167 MnO3 (LKMO) and La0.833 K0.167 MnO3/SrTiO3 (LKMO/STO) are fabricated at different temperatures. STLK08, STLK10 and STLK12 stand for the samples sintered at 800, 1000 and 1200℃ respectively. X-ray diffraction (XRD) shows that all of the three samples consisted of homogeneous solid solution phases. The resistivity for LKMO shows insulator-metal transition with decreasing temperature, but the resistivities of STLK10 and STLK12 show an insulator behavior over the whole temperature regime (4-300 K). The low-field (0.02 T) magnetoresistance increases from 0.2% to 11% with temperature decreases from 250 K to 4 K for STLX12 sample. The high field (μ0H = 5.5 T) magnetoresistanee almost increases linearly with decreasing temperature, which is much higher than the magnetoresistance of LKMO (The high field magnetoresistance are 65% and 40% at 4 K for STLK12 and LKMO, respectively). The enhancement in magnetoresistance is quantitatively explained by spin-polarizedtunneling at grain boundaries.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第2期1127-1134,共8页 Acta Physica Sinica
基金 河海大学校基金(批准号:2013/406083 1014/405139)资助的课题~~
关键词 低场磁电阻 高场磁电阻 白旋极化隧穿 钙钛矿 low-field magnetoresistance, high-field magnetoresistance, spin-polarized tunneling, perovskite
  • 相关文献

参考文献31

二级参考文献34

  • 1[1]Baibich M N,Broto J M, Fert A, Nguyeu Van Dau F,Petroff F, Eitenne P, Creuzet G, Friederich A and Chazelas J 1988 Phys.Rev.Lett.61 2472 被引量:1
  • 2[2]Xiao G, Jiang J S and Chien C C 1992 Phys.Rev.Lett. 68 3749 被引量:1
  • 3[3]Berkowitg A E, Mitchell J R, Carey M J, Young A P, Zhang S, Spada F E, Parkar F T, Hutten A and Thomas G 1992 %Phys.Rev.Lett.%68 3745 被引量:1
  • 4[5]Jin S, Tiefel T H, McCormack M, Fastnact R A, Ramesh R and Chen L H 1994 Science 264 413 Jin S et al 1994 J.Appl.Phys. 76 6929 被引量:1
  • 5[6]Miyazaki T, Tezuka N 1995 %J.Magn.Magn.Mater.% 139 L231 被引量:1
  • 6[7]Moodera J S, Kinder L R, Wong T M and Meservey R 1995 %Phys.Rev.Lett.% 74 3273Moodera J S and Kinder L R 1996 %J.Appl.Phys.% 79 4724 被引量:1
  • 7[8]Lu Y, Li X W, Gong G Q, Xiao G, Gupta A, Lecoeur P, Sun J Z, Wang Y Y and Dravid V P 1996 Phys.Rev. B 54 8357 被引量:1
  • 8[11]Julliere M 1975 %Phys.Lett.%A 54 225 被引量:1
  • 9[12]Gu R Y, Xing D Y and Dong J 1996 %J.Appl.Phys.% 80 7163 被引量:1
  • 10[13]Milner A, Gerber A, Groisman B, Karpovsky M and Gladkikh A 1996 %Phys.Lett.% 76 475 被引量:1

共引文献14

同被引文献32

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部