期刊文献+

Apriori算法分析与改进综述 被引量:23

Review of the optimization and analysis of Apriori algorithm
下载PDF
导出
摘要 数据挖掘中的关联规则挖掘能够发现大量数据中项集之间有趣的关联或相关联系,特别是随着大量数据不停地收集和存储,从数据库中挖掘关联规则就越来越有其必要性。通过对关联规则挖掘技术及其相关算法A priori进行分析,发现该技术存在的问题。本文介绍了能优化该技术的各种算法,分析了这些算法各自的优缺点,并针对这些问题提出了未来的研究方向。 The many interesting relations and relevance between the different items of sets can be located by means of the association rules mining technique of data mining. The mining of association rules from databases becomes especially necessary with the data in collection and storation becomes even larger. However,an analysis of the association rules mining technique and its relevant algorithm of Apriori has indicated that there exist problems in the technique in discussion. This paper is a review of the algorithms used to optimize the technique in terms of their strengths and weaknesses. New research directions of the algorithm of Apriori have also been pointed out in this paper.
作者 牛丽敏
出处 《桂林电子科技大学学报》 2007年第1期27-30,共4页 Journal of Guilin University of Electronic Technology
关键词 数据挖掘 关联规则 APRIORI算法 优化 data mining association rules Apriori optimization
  • 相关文献

参考文献12

二级参考文献21

  • 1邓大权,李磊.时态关联规则研究与应用[J].大连理工大学学报,2003,43(z1):150-154. 被引量:3
  • 2[1]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In Proceeding of the 20th International Conference on Very Large Databases. 1994, 487-499 被引量:1
  • 3[2]Jong S P, Ming S C, Philip S Y. An effective hash based algorithm for mining association rules[C]. In Proceedings of the 1995 ACM SIGMOD International Conference On Management of Data. 1995, 24(2): 175-186 被引量:1
  • 4[3]Jiawei H, Micheline K. Data mining: concepts and techniques[C]. Morgan, 2001, 149-158 被引量:1
  • 5[1]R.Agrawal,T.Imielinski,and A.Swami.Mining association rules between sets of items in large databases.Proceedings Of ACM SIGMOD ,May.1993, PP.207-216. 被引量:1
  • 6[3]Fan Jiannua and Li Deyi. An Overview of Data Mining and Knowledge Discovery, J.of Comput. Sci.&Technol, Vol.13,No.4,Jul.1998,PP.348-368. 被引量:1
  • 7Han J,Proc 2000 ACMSIGMOD Int Conf Management of Data(SIGMOD 2000),2000年 被引量:1
  • 8Han Jiawei,Issuer for On-line Analytical Mining of Data Warehouses 被引量:1
  • 9HanJiawei KamberM.Data Mining:Concepts and Techniques[M].北京:高等教育出版社,2001.. 被引量:3
  • 10Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[M].New York,NY:ACM Press,1993:207-216. 被引量:1

共引文献393

同被引文献151

引证文献23

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部