期刊文献+

Li嵌入对V_2O_5电子结构及光学性质的影响(英文) 被引量:1

Influence of Intercalated Li on Electronic Structures and Optical Properties of V_2O_5
下载PDF
导出
摘要 采用第一性原理局域密度近似法计算了V2O5的电子态密度和能带结构以及Li嵌入后对其电子结构和光学性质的影响。计算结果表明,V2O5是间接带隙半导体,Li的嵌入并没有改变其电子的跃迁方式。但Li的嵌入使得V2O5导带能量下移,禁带宽度减小,导带中原有的劈裂被分裂的能级填满;同时致使价带出现展宽。电子态密度计算结果表明Li的嵌入对临近的O和V的电子结构有较大的影响。Li2s电子的注入提高了V2O5的费米能级并导致其进入导带。由于价带中的电子只能跃迁到费米能级以上的导带空能级,这致使体系实际的光学带隙增大。同时随着Li注入量的进一步增加,价带的展宽更为明显,费米能级亦呈升高的趋势,使得光学带隙随着Li注入量的增加而增大。 The density of states and band structures of α-V2O5 and L-intercalated V2O5 (Li, V2O5, x = 0.5 and 1.0) have been studied using a first-principles calculation based on density function theory with the local density approximation. The results indicate that V2O5 is an indirect-gap semiconductor; the intercalation of Li will not change its way of electron transition. While, the intercalation of Li lowers the energy of conduction band, and then narrows the band gap. At the same time, due to the intercalation of Li, the split-off in the conduction band of V2O5 disappears because of the split of conduction band. The Fermi level of Li,V2O5 increases dramatically due to the electron transfer from Li 2s to the V2O5 host, which is probably the main reason why the optical band-gap augments with the Li intercalation.
出处 《发光学报》 EI CAS CSCD 北大核心 2007年第1期1-6,共6页 Chinese Journal of Luminescence
基金 国家重点基础研究发展规划(001CB610505) 国家自然科学基金(60376015,60336020) 福建省青年人才创新基金(2005J005)资助项目~~
关键词 第一性原理 V2O5 Li嵌入 电子结构 光学性质 first-principles calculation V2O5 Li intercalation electronic structure optical properties
  • 相关文献

参考文献18

  • 1Ivanova T,Harizanova A,Surtchev M.Formation and investigation of sol-gel TiO2-V2O5 system[J].Mater.Lett.,2002,55(5):327-333. 被引量:1
  • 2Grzybowska-Swierkosz B.Vanadia-titania catalysts for oxidation of o-xylene and other hydrocarbons[J].Appl.Catal.A,1997,157(1):263-310. 被引量:1
  • 3Bondarenka V,Grebinskij S.Thin films of poly-vanadium-molybdenum acid as starting materials for humidity sensors[J].Sensors and Actuators B,1995,28(3):227-231. 被引量:1
  • 4童茂松,戴国瑞,高鼎三,Galina Zakharova,Olga Pozdniakova.V_2O_5薄膜的电学性质及其应用[J].材料导报,2000,14(10):36-38. 被引量:7
  • 5Lee S H,Hyeonsik M C,Maeng J S,et al.Raman spectroscopic studies of amorphous vanadium oxide thin films[J].Solid State Ionics,2003,165(1-4):111-116. 被引量:1
  • 6Benmoussa M,Outzourhit A,Bennouna A,et al.Electrochromism in sputtered V2O5 thin films:structural and optical studies[J].Thin Solid Films,2002,405(1-2):11-16. 被引量:1
  • 7Ottaviano L,Pennisi A,Simone F,et al.RF sputtered electrochromic V2O5 films[J].Opt.Mater.,2004,27(2):307-313. 被引量:1
  • 8Yoo S J,Lim J W,Sung Y E.Improved electrochromic devices with an inorganic solid electrolyte protective layer[J].Solar Energy Materials & Solar Cells,2006,90(4):477-484. 被引量:1
  • 9Cesar O A,Luis O S B.Optical and electrochemical properties of V2O5:Ta sol-gel thin films[J].Solar Energy Materials & Solar Cells,2006,90(4):444-451. 被引量:1
  • 10Wu G M,Du K F,Xia C S,et al.Optical absorption edge evolution of vanadium pentoxide films during lithium inter-calation[J].Thin Solid Films,2005,485(1-2):284-289. 被引量:1

二级参考文献25

  • 1刘大力,杜国同,张源涛,王新强,杨天鹏,杨晓天,赵佰军,杨洪军,刘博阳,张景林.ZnO薄膜的光抽运紫外激射[J].发光学报,2004,25(4):389-392. 被引量:4
  • 2徐群和,康俊勇.ZnO中Li相关缺陷结构性质[J].发光学报,2006,27(4):509-513. 被引量:5
  • 3郜定山,学位论文,2000年 被引量:1
  • 4Harreld J,J Noncryst Solids,1998年,225卷,319页 被引量:1
  • 5Le D B,J Electrochem Soc,1996年,143卷,7期,2099页 被引量:1
  • 6肖慎修,量子化学中的离散变分Xα方法及计算程序,1986年,38页 被引量:1
  • 7Lee E C,Chang K J.Possible p-type doping with group-Ⅰ elements in ZnO[J].Phys.Rev.B,2004,70(11):1152101-1152104. 被引量:1
  • 8Paul Erhart,Andreas Klein,Karsten Albe.First-principles study of the structure and stability of oxygen defects in zinc oxide[J].Phys.Rev.B,2005,72(8):0852131-08521317. 被引量:1
  • 9Zhang S B,Wei S H,Zunger A.Intrinsic n-type versus p-type doping asymmertry and the defect physics of ZnO[J].Phys.Rev.B,2001,63(7):0752051-0752057. 被引量:1
  • 10Oba F,Nishitani S R,Isotani S,et al.Energetics of native defects in ZnO[J].J.Appl.Phys.,2001,90 (2):824-828. 被引量:1

共引文献17

同被引文献23

  • 1胡加辉,朱军山,冯玉春,张建宝,李忠辉,郭宝平,徐岳生.Si(111)衬底上GaN的MOCVD生长[J].发光学报,2005,26(4):517-520. 被引量:3
  • 2Kawashima T, Yoshikawa H, Adachi S, et al. Optical properties of hexagonal GaN [J]. J. Appl. Phys., 1997, 82(7) : 3528 -3535. 被引量:1
  • 3Song Young-Yeal, Quang Pham Hong, Pham Van-Thai, et al. Change of optical band gap and magnetization with Mn con- centration in Mn-doped AIN films [J]. Journal of Magnetism and Magnetic Materials, 2005, 290-291:1375-1378. 被引量:1
  • 4Wu R Q, Shen L, Yang M, et al. Enhancing hole concentration in AIN by Mg: 0 codoping: Ab initio study [J]. Phys. Rev. B, 2008, 77(7) :073203-14. 被引量:1
  • 5LiuQijia ZhangRong XieZili etal.Study on the processing of buffer and epilayer during the two-step growth of AIN .中国科学E,2008,38(7):1080-1084. 被引量:1
  • 6Taniyasu Y, Kasu M, Kobayashi N. Intentional control of n-type conduction for Si-doped AIN and AlxGa1-xN [ J ]. Appl. Phys. Lett. , 2002, 81(7) :1255-1257. 被引量:1
  • 7Taniyasu Y, Kasu M, Makimoto T. Electrical conduction properties of n-type Si-doped AIN with high electron mobility [J]. Appl. Phys. Lett. , 2004, 85(20):4672-4674. 被引量:1
  • 8Nakarmi M L, Kim K H, Zhu K, et al. Transport properties of highly conductive n-type Al-rich AlxGa1-xN [J]. Appl. Phys. Lett. , 2004, 85(17):3769-3771. 被引量:1
  • 9Ive T, Brandt O, Kostial H, et al. Controlled n-type doping of AIN: Si films grown on 6H-SiC (0001) by plasma-assisted molecular beam epitaxy [J]. Appl. Phys. Lett., 2005, 86(2) :024106-1-3. 被引量:1
  • 10Yim W M, Stofko E J, Zanzucchi P J, et al. Epitaxially grown AIN and its optical band gap [J]. J. Appl. Phys. , 1973, 44( 1 ) :292-296. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部