摘要
利用双锥上的不动点定理,并赋予f,g一定的增长条件,证明了二阶三点微分方程组的边值问题x″+f(t,x,y)=0 0≤t≤1y″+g(t,x,y)=0 0≤t≤1x(0)-β1x′(0)=0x(1)=α1x(η1)0<η1<1y(0)-β2y′(0)=0y(1)=α2y(η2)0<η2<1至少存在2组正解,其中f,g:[0,1]×R+×R+→R是连续的且可以变号。
For a second-order and three-point boundary value problem as follows:
{x"+f(t,x,y)=0 0≤t≤1
y"+g(t,x,y)-0 0≤t≤1
x(0)-β1x'(0)=0 x(1)=α1x(η1) 0〈η1〈1
y(0)-β2y'(0)=0 y(1)=α2x(η2) 0〈η2〈1
where f, g :[0, 1] ×R ^+× R^ + →R is continuous and its sign is alternated. By the fixed point theorem in a double cone and endowing certain growth conditions to f and g, the existence of at least two positive solutions for above problem was derived.
出处
《中国农业大学学报》
CAS
CSCD
北大核心
2007年第1期95-98,共4页
Journal of China Agricultural University
基金
国家自然科学基金资助项目(60573158)
河北省自然科学基金资助项目(A2006000298)
关键词
三点边值问题
GREEN函数
双锥上的不动点定理
正解
three-point boundary value problem
Green's function
fixed point theorem in double cones
positive solution