期刊文献+

基于支持向量学习机的HIV-1蛋白酶抑制剂的活性预测 被引量:2

Activity Prediction of HIV-1 Protease Inhibitors Using Support Vector Machine
下载PDF
导出
摘要 为了预测人体免疫缺陷蛋白酶抑制剂的活性,计算了表征分子的组成和拓扑特征的462个分子描述符,用Kennard-Stone方法和随机方法进行了训练集和测试集设计,用Monte Carlo模拟退火方法进行变量筛选,并分别用神经网络,逻辑回归,k-近邻和支持向量学习机方法建立了HIV-1蛋白酶的抑制剂模型.结果表明支持向量学习机优于其余机器学习方法,用SVM方法所建立的最优模型的最后预测正确率达到98.24%. In order to predict the activity of HIV protease inhibitors, constitutional and topological descriptors, in total 462, were calculated to characterize the structural and physicochemical properties for each molecule under study. The Kennard-Stone method and a random method were adopted to design the training set and the test set. Monte Carlo simulated annealing method was applied to the variable selection. Machine learning methods including support vector machine, artificial neural network, logistic regression, and k-nearest neighbor, were applied to the development of inhibitor models. It was shown that the support vector machine method outperforms the other methods and the final model developed using the SVM method gave a prediction accuracy of 98.24%.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2007年第3期197-202,共6页 Acta Chimica Sinica
基金 国家自然科学基金(No.20572073)资助项目
关键词 蛋白酶抑制剂 分子描述符 机器学习方法 变量筛选 protease inhibitor molecular descriptor machine-learning method variable selection
  • 相关文献

参考文献17

  • 1Piana, S.; Carloni, P. Proteins 2000, 39, 26. 被引量:1
  • 2Xue, Y.; Yap, C. W.; Sun, L. Z.; Cao, J. E; Wang, J. F.;Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1497. 被引量:1
  • 3Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Comput.Chem. 21101, 26, 5. 被引量:1
  • 4Figueiredo, L. J. O.; Antunes, O. A. C. Int. J. Quantum Chem. 21100, 76, 744. 被引量:1
  • 5Lather, V.; Madan, A. K. J. Mol. Graphics Mod. 2005, 23,339. 被引量:1
  • 6Patankar, S. J.; Jurs, E C. J. Comput. Aid. Mol. Des. 2003,17, 155. 被引量:1
  • 7Huang, X. Q.; Xu, L. S.; Luo, X. M.; Fan, K. N.; Ji, R. Y.;Pei, G.; Chen, K. X.; Jiang, H. L. J. Med. Chem. 2002, 45,333. 被引量:1
  • 8Pastor, M.; Perez, C.; Gago, E J. Mol. Graphics Mod. 1997,15, 364. 被引量:1
  • 9李卫华,许旋.HIV蛋白酶抑制剂吡喃酮类化合物的QSAR研究[J].计算机与应用化学,2002,19(3):288-290. 被引量:10
  • 10Lee, Y. S.; Lee, Y. S.; Lee, J. Y,; Kim, S. N.; Lee, C. K.;Park, H. Bioorg. Med. Chem. Lett. 2000, 10, 2625. 被引量:1

二级参考文献28

  • 1[1]Pearl L H, Taylor W R. Nature, 1987, 329: 351-352. 被引量:1
  • 2[2]Babine. Bender molecular recognition of protein-ligand complexes. Chem Rev, 1997, 5:1365 - 1386. 被引量:1
  • 3[3]Moyle G, Gazzard B. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs, 1996, 5:701-712. 被引量:1
  • 4[4]Bradley D T, Hagen S, Domagala J, et al. 4-Hydroxy-5, 6-dig ydropyrones, 2.Potent Non-peptide inhibitors of HIV protease. J Med Chem, 1997, 40:3781-3792. 被引量:1
  • 5[5]Prasad J V N V, Kimberly S P, Elizabeth A L, et al. Novel series of achiral, low molecular weight, and potent HIV-1 protease inhibitors. J Am Chem Soc, 1994, 116:6989-6990. 被引量:1
  • 6[6]Vellarkand N V, Arup K G, Ganapathi R R, et al. Pysicochemical parameters for three dimensional structure directed quantitativestructure-activity relationships, 4. Additional parameters for Hydrophobic and dispersivereactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci, 1989, 29:163 - 172. 被引量:1
  • 7[7]Border N, Gabanyi Z, Wong C. J Am Chem Soc, 1989, 111:3783-3876. 被引量:1
  • 8[1]Maier, N. M.; Franco, P.; Lindner, W. J. J.Chromatogr. , A 2001, 906, 3. 被引量:1
  • 9[2]Altria, K. D.; Kersey, M. T. LC-GC Int. 1995, 8, 201. 被引量:1
  • 10[3]Hirokawa, T.; Ikuta, N.; Yoshiyama, T. J. Chromatogr.,A 2000, 894, 3. 被引量:1

共引文献12

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部