期刊文献+

Boundedness of Commutators with Lipschitz Functions in Non-homogeneous Spaces 被引量:3

Boundedness of Commutators with Lipschitz Functions in Non-homogeneous Spaces
原文传递
导出
摘要 Under the assumption that the underlying measure is a non-negative Radon measure which only satisfies some growth condition, the authors prove that for a class of commutators with Lipschitz functions which include commutators generated by Calderon-Zygrnund operators and Lipschitz functions as examples, their boundedness in Lebesgue spaces or the Hardy space H^1 (μ) is equivalent to some endpoint estimates satisfied by them. This result is new even when the underlying measure μ is the d-dimensional Lebesgue measure.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第1期67-80,共14页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 10271015) the Program for New Century Excellent Talents in Universities of China (No. NCET-04-0142).
关键词 COMMUTATOR Lipschitz function Lebesgue space Hardy space RBMO space Non-doubling measure 换向器 Lipschitz函数 非均匀空间 Lebesgue空间 Hardy空间
  • 相关文献

参考文献16

  • 1García-Cuerva, J. and Gatto, A. E., Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures, Publ. Mat., 49, 2005, 285-296. 被引量:1
  • 2García-Cuerva, J. and Martell, J., Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces, Indiana Univ. Math. J., 50, 2001, 1241-1280. 被引量:1
  • 3García-Cuerva, J. and Rubio de Francia, J. L.,Weighted Norm Inequalities and Related Topics, North-Holland Math. Studies, Vol. 16, North-Holland, Amesterdan, 1985. 被引量:1
  • 4Hu, G., Meng, Y. and Yang, D. C., Boundedness of Riesz potentials in non-homogeneous spaces, Acta Math. Sci. Set. B Engl. Ed., to appear, 2008. 被引量:1
  • 5Meng, Y. and Yang, D. C., Boundedness of commutators with Lipschitz function in nonhomogeneous spaces, Taiwan Residents J. Math., 10, 2006, 1443-1464. 被引量:1
  • 6Nazarov, F., Treil, S. and Volberg, A., Weak type estimates and Cotlar's inequalities for Calderón-Zygmund operators on non-homogeneous spaces, Int. Math. Res. Not., 9, 1998, 463-487. 被引量:1
  • 7Nazarov, F., Treil, S. and Volberg, A., Accretive system Tb-theorems on nonhomogeneous spaces, Duke Math. J., 113, 2002, 259-312. 被引量:1
  • 8Nazarov, F., Treil, S. and Volberg, A., The Tb-theorem on non-homogeneous spaces, Acta Math., 190,2003, 151-239. 被引量:1
  • 9Orobitg, J. and Pérez, C., Ap weights for nondoubling measures in R^n and applications, Trans. Amer.Math. Soc., 354, 2002, 2013-2033. 被引量:1
  • 10Tolsa, X., A T(1) theorem for non-doubling measures with atoms, Proc. London Math. Soc., 82, 2001,195-228. 被引量:1

同被引文献8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部