期刊文献+

异型微腔本征模式分析 被引量:1

Analysis of eigenmodes for asymmetric resonant micro-cavities
下载PDF
导出
摘要 微腔模式特性的研究是微腔各种应用的基础。采用时域有限差分方法(FDTD)可以获得微腔模式的频谱响应特性。通过对平面平行腔的验证,发现FDTD方法可以获得同理论较吻合的结果。对平面圆腔的回音壁模(WGM)腔模特性的分析表明;这种腔体尺寸同波长相当的谐振腔具有较好的选模特性.通过腔边界由两个带变形参数的圆弧所构成的平面异型微腔在不同变形参数下模式特性的细致研究,则发现通过改变腔形可以达到改善腔模模式特性的目的,这表明优化腔形设计是优化腔性能的一条可行思路。 The study of mode characteristics is a foundation for various applications of microcavity. The finite difference time domain (FDTD) technique is used to obtain the responce characteristics of cavity-mode spectra. The FDTD technique is demonstrated in the case of plane-parallel cavity, and the numerical results can coincide well with the theory results. The whisper gallery mode (WGM) characteristics of the plane-circular cavity are analyzed, and the results indicate that wavelength-scale cavities have good mode-selecting power. The detailed research on plane asymmetric resonant cavities composed of two arched boundary under different deformation parameter indicates that by changing the cavity shape the purpose of improving the performances of microcavities can be achieved. The results also show that it is a practical way to optimize the performance of cavities by optimizing cavity shape.
出处 《量子电子学报》 CAS CSCD 北大核心 2007年第1期27-31,共5页 Chinese Journal of Quantum Electronics
关键词 光电子学 异型腔 有限时域差分 微腔 回音壁模 optoelectronics asymmetric resonant cavities finite difference time domain microcavity whisper gallery mode
  • 相关文献

参考文献11

  • 1Vahala K J.Progress in Asymmetric Resonnant Cavities[M].Singapore:World Scientific Publishing Co.Pte.Ltd.,2004.415-502. 被引量:1
  • 2N(o)ckel J U,Stone A D,Chen G,et al.Directional emission from asymmetric resonant cavities[J].Opt.Lett.,1996,21(19):1609-1611. 被引量:1
  • 3Tureci H E,Schwefel H G L,Stone A D,et al.Modes of wave-chaotic dielectric resonators[J].Progress in Optics,2005,47:75-137. 被引量:1
  • 4Nockel J U,Stone A D.Ray and wave chaos in asymmetric resonant optical cavities[J].Nature,1997,385(2):45-47. 被引量:1
  • 5McCall S L,Levi A F J,Slusher R E,et al.Whispering-gallery mode microdisk lasers[J].Appt.Phys.Lett.,1992,60(3):289-291. 被引量:1
  • 6Slusher R E,Levi A F J,Mohideen U,et al.Threshold characteristics of semiconductor microdisk lasers[J].Appl.Phys.Lett.,1993,63(10):1310-1312. 被引量:1
  • 7Gorodetsky M L,Savchenkov A A,Ilchenko V S.Ultimate Q of optical microsphere resonators[J].Opt.Lett.,1996,21(70):453-455. 被引量:1
  • 8Collot L,Lefevreseguin Brune V M,Raimond J M,et al.Very high-Q whisper gallery mode resonances observed on fused-silica microspheres[J].Euro.phys.Lett.,1993,23:327-334. 被引量:1
  • 9Dey S,Mittra R.Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Padé approximation[J].IEEE Microwave Guided Wave Lett.,1998,12(8):415-417. 被引量:1
  • 10Guo Weihua,Li Weijun,Huang Yongzhen.Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation[J].IEEE Microwave Guided Wave Lett.,2001,11(5):223-225. 被引量:1

同被引文献17

  • 1蔡鑫伦,黄德修,张新亮.基于全矢量模式匹配法的三维弯曲波导本征模式计算[J].物理学报,2007,56(4):2268-2274. 被引量:2
  • 2Ladbury J M, Lehman T H, Koepke G H. Coupling to devices in electrically large cavities, or why classical EMC evaluation techniques are becoming obsolete[C]//IEEE International Symposium on Electromagnetic Compatibility. 2002, 2:648-655. 被引量:1
  • 3Hemmady S D. A Wave-chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures[D]. MD: University of Maryland, 2006. 被引量:1
  • 4Holland R, John S. Statistical electromagnetics[R]. AFRL-DE-PS-TR 1998-1025, 1998. 被引量:1
  • 5Naus H W L. Statistical electromagnetics: complex cavities[J]. IEEE Trans on Electromagnetic Compatibility, 2008, 50(2):316-324. 被引量:1
  • 6Lehman T H. A statistical theory of electromagnetic fields in complex cavities[G]. Interaction Notes: IN 494, 1993. 被引量:1
  • 7Kostas J G, Boverie B. Statistical model for a mode-stirred chamber[J].IEEE Trans on Electromagnetic Compatibility, 1991, 33(4) :366. 被引量:1
  • 8Price R H, Davis H T, Wenaas E P. Determination of the statistical distribution of electromagnetic-field amplitudes in complex cavities[J].Phys Rev E, 1993, 48(6) :4716-4729. 被引量:1
  • 9Hill D A. Plane wave integral representation for fields in reverberation chambers[J]. IEEE Trans on Electromagnetic Compatibility, 1998, 40(3) :209-217. 被引量:1
  • 10Hill D A, Ladbury J M. Spatial-correlation functions of fields and energy density in a reverberation chamber[J]. IEEE Trans on Electromagnetic Compatibility, 2002, 44(1) : 95-101. 被引量:1

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部