期刊文献+

一种并行协同粒子群优化的支持向量机预测模型 被引量:6

Prediction model of support vector machine based on parallel cooperative particle swarm optimization
下载PDF
导出
摘要 转炉提钒过程是一个非常复杂的多元非线性反应过程,从统计学和反应机理等角度出发,难以建立终点控制静态模型.针对这样的问题,提出了并行协同粒子群优化的支持向量机预测模型,不仅克服了支持向量机偏差ε和折中参数C选择的随机性,而且较好地解决了大数据集的快速并行计算,缩短了计算时间,从而有利于连续生产操作.试验表明,用该模型预测转炉提钒的冷却剂加入量和吹氧时间,结果的误差减小,满足了终点命中率在90%以上的指标,具有工程实用性. Converter re-vanadium is a very complexdiverse and nonlinear reaction. From the point of view of statistics and reaction mechanism, it is difficult to build an endpoint control static modei. Considering this problem, we presented a prediction model using support vector machine (SVM) based on parallel cooperative particle swarm. This model not only perfectly solves the problem of random selection of SVM regression parameter such as e and C, but also provides rapid calculation for the problem with large data sets and reduces the computing time. Accordingly the model is beneficial to continuous production. The model was used to predict the quantity of refrigerant and time consumption of oxygen in converter re-vanadium, the results of experiments showed that the errors were reduced and the endpoint hitting ratio reached the target for over ninety percent.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第6期934-940,共7页 Control Theory & Applications
基金 国家自然科学基金(60271019) 重庆市教委基础研究项目(KJ060614) 重庆市科委攻关项目(20020828).
关键词 并行协同粒子群 支持向量机 参数优化 转炉提钒 预测模型 parallel cooperative particle swarm support vector machine parameters optimization converter revanadium prediction model
  • 相关文献

参考文献16

  • 1黄道鑫..提钒炼钢[M],2000.
  • 2ZHANG C, SHAO H, LI Y. Particle swarm optimization for evolving artificial network[C]//Proc of IEEE Int Conf on System, Man,Cybernetics. Piseataway: IEEE Service Center, 2000:2487 - 2490. 被引量:1
  • 3MEN'DES E CORTEZ P, ROCHA M, et al. Particle swarms for feedforward neural network training[C]//Proc of lnt Joint Conf on Neural Networks. Honolulu: IEEE Computer Society, 2002:1895-1899. 被引量:1
  • 4JUANG Chiafeng. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J]. IEEE Trans on Systems,Man and Cybernetics-Part B: Cybernetics, 2004, 34(2): 997 - 1006. 被引量:1
  • 5SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proc IEEE Int Conf on Evolutionary Computation. Anchorage: IEEE Press, 1998: 69- 73. 被引量:1
  • 6SHI Y, EBERHART R, Fuzzy adaptive particle swarm optimization[C]// Proc of IEEE Conf On Evolutionary Computation. Piscataway: IEEE Service Center, 2001:101 - 106. 被引量:1
  • 7吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450
  • 8IDE Y K, IWASAKI A N. Adaptive particle swarm optimization[C] //IEEE Int Conf on Systems, Man and Cybernetics. Indianapolis: IEEE Press, 2003: 1554- 1559. 被引量:1
  • 9JOACHIMES T. Making large-scale SVM learning practical[M]//Advances in Kernel Methods-Support Vector Learning. MA: MIT Press, 1999:168 - 184. 被引量:1
  • 10PLATT J C. Fast training of support vector machines using sequential minimal optimizafion[M]// Advances in Kernel Methods-Support Vector Learning. MA: MIT Press, 1999:185 - 208. 被引量:1

二级参考文献11

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107. 被引量:1
  • 2Chih-Jen Lin. LIBSVM. Taibei: National Taiwan University,2003. http://www.csie. ntu. edu. tw/- cjlin/. 被引量:1
  • 3R R Rao, Tsuhan Chen. Cross-modal prediction in audio-visual communication. In: 1996 IEEE Int'l Conf on Acoustics, Speech,and Signal Processing (ICASSP'96) . Piscataway, NJ, USA:IEEE, 1996. 2056-2059. 被引量:1
  • 4Tsuhan Chen, R R Rao. Audio-visual interaction in multimedia communication. In: 1997 IEEE Int'l Conf on Acoustics, Speech,and Signal Processing (ICASSP'97) . Piscataway, NJ, USA:IEEE, 1997. 179-182. 被引量:1
  • 5R R Rao, Chen Tsuhan, Mersereau Rusell M. Audio-to-visual conversion for multimedia eornmunieation. IEEE Trans on Industrial Electronics, 1998, 45(2): 15-22. 被引量:1
  • 6T Chen. Audiovisual speech processing. IEEE Signal Processing Magazine, 2001, 18(1): 9-21. 被引量:1
  • 7F Lavagetto. Time-delay neural networks for estimating lip movements from speech analysis: A useful tool in audio-video synchronization. IEEE Trans on Circuits and Systems for Video Technology, 1997, 7(5): 786-800. 被引量:1
  • 8Kyoung Ho Choi, Jenq-Neng Hwang. Baum-Welch hidden Markov model inversion for reliable audio-to-visual conversion. In:1999 IEEE 3rd Workshop on Multimedia Signal Processing.Piscataway, NJ, USA: IEEE, 1999. 175-180. 被引量:1
  • 9J J Williams, A K Katsaggelos, M A Randolph. A hidden Markov model based visual speech synthesizer. In: 2000 IEEE Int'l Conf on Acoustics, Speech, and Signal Processing (ICASSP'O0) Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc, 2000. 2393-2396. 被引量:1
  • 10Bernhard Scholkopf, Alex J Smola, Robert Williamson et al. New support vector algorithms. NeuroCOLT2, Tech Rep: NC2-TR-1998-031, 1998. 被引量:1

共引文献472

同被引文献68

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部