期刊文献+

基于RL特征的光学公式识别方法 被引量:1

An approach for optical formula recognition based on RL features
原文传递
导出
摘要 提出了一种光学公式识别与分析的新方法,在公式符号提取与识别中采用RL(Run_length)特征以提高识别率。采用二层连通区域搜索算法提取公式符号的图像,其中第一层为基于RL特征的符号提取,得到复合符号的整体连通区域;第二层为传统搜索方法,进一步确定这些复合符号中包含的单一符号。设计了专门的公式符号识别器,对公式符号进行识别;根据符号间的语义信息和几何关系得到公式的逻辑结构;最终表达为公式结构树。在对印刷文献中所含公式的识别实验中取得了较好的效果,表明该方法具有良好的应用前景。 A new method for optical formula recognition and analysis was put forward. The RL features were used in formula extraction and recognition to improve the recognition accuracy. The symbol images were obtained with a two-layers searching algorithm of connected components. In the first layer, the connection areas of composed symbols were extracted with RL features. And the single symbols contained in these composed symbols were identified with a traditional way in the second layer. A special recognizer was designed to identify these symbol images. The logical structure was obtained according to their geometrical features and lingual information. The analysis result was presented as a formula structure tree. The experiments were done on some mathematical expressions within printed document. The results show that the method is of immense practical and theoretical value.
出处 《光学技术》 EI CAS CSCD 北大核心 2007年第1期79-82,共4页 Optical Technique
基金 河北省自然科学基金资助项目(F2004000132)
关键词 OCR 光学公式识别 符号识别 结构分析 RL特征 OCR optical formula recognition symbol recognition structural analysis RL feature
  • 相关文献

参考文献13

  • 1Wang K J,Lin G F,Wang L B.Survey of recognition methods for mathematical expressions[J].Techniques of Automation and Application,2003,22(8):1-6. 被引量:1
  • 2Chan K F,Yeung D Y.Mathematical expression recognition:a survey[J].International Journal On Document Analysis and Recognition,2000,3(1):1-11. 被引量:1
  • 3Nakayama Y.A prototype pen-input mathematical formula editor[C].Proceeding of ED-MEDIA 93-World Conference on Educational Multimedia and Hypermedia,USA:Orlando,1993.23-26. 被引量:1
  • 4Okamoto M,Miao B.Recognition of mathematical expressions by using the layout structures of symbols[C].Proceeding of International Conference on Document Analysis and Recognition,25,Saint malo,France,1991.242-250. 被引量:1
  • 5Chen L H,Yin P Y.A system for on-line recognition of handwritten mathematical expressions[J].Computer Processing of Chinese and Oriental Languages,1992,6(1):19-39. 被引量:1
  • 6Fateman R J,Tokuyasu T.Optical character recognition and parsing of typeset mathematics[J].Visual Communication and Image Representation,1995,7(1):2-15. 被引量:1
  • 7Belaid A,Haton J P.A syntactic approach for handwritten mathematical formula recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(1):105-111. 被引量:1
  • 8Dimitriadis Y A,Coronado J L.Towards an ART based mathematical editor,that uses on-line handwritten symbol recognition[J].Pattern Recognition,1995,28(6):807-822. 被引量:1
  • 9王学文,丁晓青,刘长松.基于Gabor变换的高鲁棒汉字识别新方法[J].电子学报,2002,30(9):1317-1322. 被引量:38
  • 10Anderson R H.Two dimension mathematical notation[M].In Syntactic Pattern Recognition Application,Springer Verlag Press,1977. 被引量:1

二级参考文献12

  • 1[1]J G Daugman.Uncertainty relation for resolution in space,spatial frequency,and orientation optimized by two dimensional visual cortical filters [J].J Opt Soc Am A,1985,2(7):1160-1169. 被引量:1
  • 2[2]Wang X W,et al.A gray scale image based character recognition algorithm to low quality and low resolution Images [A].Document Recognition and Retrieval VIII,Electronic Imaging 2001 [C].San Jose:IS&T/SPIE,2001. 被引量:1
  • 3[3]L Wang,et al.Pavlidis.Direct gray scale extraction of features for character recognition [J].IEEE Trans on PAMI,1993,15(10):1053-1066. 被引量:1
  • 4[4]Zhang J Y,et al.Multi scale feature extraction and nested subset classifier design for high accuracy handwritten character recognition [A].Proc ICPR'2000 [C].Barcelona:IAPR,2000. 被引量:1
  • 5[5]J Mao,et al.Artificial neural networks for feature extraction and multivariate data projection [J].IEEE Trans on Neural Networks,1995,6(2):296-317. 被引量:1
  • 6[6]O D Trier,et al.Goal directed evaluation of binarization methods [J].IEEE Trans on PAMI,1995,17(12):1191-1201. 被引量:1
  • 7[7]H Kamada,et al.High speed,high accuracy binarization method for recognizing text in images of low spatial resolutions [A].Proc ICDAR'99 [C].Bangalore:IAPR,1999.139-142. 被引量:1
  • 8[8]W Niblack.An Introduction to Digital Image Processing [M].New Jersey:Prentice Hall,1986.115-116. 被引量:1
  • 9[9]Y Hamamoto,et al.A Gabor filter based method for recognizing handwritten numbers [J].Pattern Recognition,1998,31(4):395-400. 被引量:1
  • 10[10]D Deng,et al.Handwritten Chinese character recognition using spatial Gabor filters and self organizing feature maps [A].Image Processing,Proceedings.ICIP 94,IEEE International Conference,Vol.3 [C].Austin:IEEE Signal Processing Society,1994. 被引量:1

共引文献37

同被引文献8

  • 1Okamoto M,Twaakyondo H.Structure analysis and recognition of mathematical expressions[C]//Proeeedings of Third International Conference on Document Analysis and Recognition,Washington,August 14 -15,1995.Washington,DC,USA:IEEE Computer Society, 1995 : 430-437. 被引量:1
  • 2Eto Y,Sasai M,Suzuki M.Mathematical formula recognition using virtual link network[C]//Sixth International Conference on Document Analysis and Recognition,Seattle,September 10-13,2001.Washington, DC, USA : IEEE Computer Society ,2001 : 762-767. 被引量:1
  • 3Chan K F,Yeung D Y.Mathematical expression recognition:a survey[J].International Journal on Document Analysis and Recognition, 2000,3 ( 1 ) :3-15. 被引量:1
  • 4Fateman R J,Tokuyasu T.Progress in recognizing typeset mathematics[C]//Proceedings of the SPIE Conference on Document Recognition Ⅲ,San Jose,CA,August 14 -16,1996.Washington,DC,USA:IEEE Computer Society, 1996,2600:37-50. 被引量:1
  • 5Kanahori T,Suzuki M.A recognition method of matrices by using variable block pattern elements generating rectangular area[C]// Lecture Notes in Computer Science,2002,2390:320-329. 被引量:1
  • 6Kanahori T,Suzuki M.Detection of matrices and segmentation of matrix elements in scanned images of scientific documents [C]// Seventh International Conference on Document Analysis and Recognition,Edinburgh,August 3-6,2003.Washington, DC, USA: IEEE Computer Society,2003,1:433-437. 被引量:1
  • 7王科俊,林桂芳,王黎斌.数学表达式识别方法综述[J].自动化技术与应用,2003,22(8):1-6. 被引量:12
  • 8陈洪波,王强,徐晓蓉,张超英.数学表达式的自动识别[J].广西科学,2004,11(1):20-26. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部