期刊文献+

A BOUNDARY INTEGRAL METHOD FOR COMPUTING ELASTIC MOMENT TENSORS FOR ELLIPSES AND ELLIPSOIDS 被引量:1

A BOUNDARY INTEGRAL METHOD FOR COMPUTING ELASTIC MOMENT TENSORS FOR ELLIPSES AND ELLIPSOIDS
原文传递
导出
摘要 The concept of elastic moment tensor occurs in several interesting contexts, in particular in imaging small elastic inclusions and in asymptotic models of dilute elastic composites. In this paper, we compute the elastic moment tensors for ellipses and ellipsoids by using a systematic method based on layer potentials. Our computations reveal an underlying elegant relation between the elastic moment tensors and the single layer potential. The concept of elastic moment tensor occurs in several interesting contexts, in particular in imaging small elastic inclusions and in asymptotic models of dilute elastic composites. In this paper, we compute the elastic moment tensors for ellipses and ellipsoids by using a systematic method based on layer potentials. Our computations reveal an underlying elegant relation between the elastic moment tensors and the single layer potential.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2007年第1期2-12,共11页 计算数学(英文)
基金 Partly supported by Korea Science and Engineering Foundation grant R02-2003-000-10012-0.
关键词 Elastic moment tensor Explicit formulae Integral equations. Elastic moment tensor, Explicit formulae, Integral equations.
  • 相关文献

参考文献14

  • 1H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,Lecture Notes in Mathematics, Volume 1846, Springer-Verlag, Berlin, 2004. 被引量:1
  • 2H. Ammari and H. Kang, Reconstruction of elastic inclusions of small volume via dynamic measurements, Appl. Math. Opt., 54 (2006), 223-235. 被引量:1
  • 3H. Ammari, H. Kang, and M. Lim, Effective parameters of elastic composites, Indiana Univ. J.Math., 55 (2006), 903-922. 被引量:1
  • 4H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity, 67 (2002), 97-129. 被引量:1
  • 5L. Escauriaza and J.K. Seo, Regularity properties of solutions to transmission problems, Trans.Amer. Math. Soc., 338:1 (1993), 405-430. 被引量:1
  • 6J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems,Proc. Royal Soc. London, Series A, 246:1226 (1957), 376-396. 被引量:1
  • 7V.V. Jikov, S.M. Kozlov, and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. 被引量:1
  • 8H. Kang, E. Kim, and J. Lee, Identification of Elastic Inclusions and Elastic Moment Tensors by Boundary Measurements, Inverse Problems, 19 (2003), 703-724. 被引量:1
  • 9H. Kang and K. Kim, Anisotropic polarization tensors for ellipses and ellipsoids, preprint, 2005. 被引量:1
  • 10T. Lewinski and Sokolowski, Energy change due to the appearance of cavities in elastic solids,International J. Solids Structures, 40 (2003), 1765-1803. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部