期刊文献+

多尺度小波降噪的数字散斑相关搜索 被引量:13

Digital speckle correlation method of multi-scale wavelet noise reduction
下载PDF
导出
摘要 提出了一种基于多尺度小波降噪的数字散斑相关搜索方法。选用symlets小波,对分别存在高斯白噪声、椒盐噪声及泊松噪声的散斑位移图像进行多级小波分解,采用不同的降噪策略处理后再进行相关搜索。计算结果表明,多尺度小波降噪的数字散斑相关搜索方法与传统空域相关搜索方法相比,其测量精度提高了一个数量级,相对误差可以控制在1%以内;同时,其计算效率提高了1倍。 A novel Digital Speckle Correlation Method (DSCM) based on multi-scale wavelet noise reduction is proposed. Speckle patterns with Gaussian white noise or Salt & pepper noise or Poisson noise are decomposed using symlets wavelet family and processed by different noise reduction strate gies. Compared with the traditional DSCM, the accuracy of this new method is improved dramatically and the relative error is less than 1%. Meanwhile, the calculated consuming time is decreased to half of the traditional DSCM.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第1期57-62,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60478026) 国家自然基金委中韩合作研究资助项目(No.60611140400)
关键词 散斑相关 小波变换 多尺度 图像处理 speckle correlation wavelet transform multi-scale image processing
  • 相关文献

参考文献6

  • 1RANSON W F, PETERS W H. Digital image technique in experimental stress analysis[J]. Opt. Eng. , 1982, 21(5): 427-431. 被引量:1
  • 2李会方,俞卞章.基于小波的多重分形图像去噪新算法[J].光学精密工程,2004,12(3):305-310. 被引量:8
  • 3MALLAT S. A theory multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. Pattern Anal. Machine Intell., 1989, 11 (7): 674-693. 被引量:1
  • 4MALLAT S. Muhifrequency channel 6eeompositions of images and wavelet models [J]. IEEE Trans. Acoust. , Speech, Signal Proces. , 1989, 37 (12): 2091-2110. 被引量:1
  • 5DAUBECHIES I. Ten lectures on wavelets [M]. CBMSNSF Series in Applied Math. Philadelphia: SIAM, Publ,1992. 被引量:1
  • 6DAUBECHIES I. Orthonormal bases of compactly supported wavelets [J]. Commun. Pure Appl. Math. , 1998,XLI. 909-996. 被引量:1

二级参考文献3

  • 1[1]DU G, YEO T S, A novel multifractal estimation method and its application to remote image segmentation[J].IEEE Trans on Geosci Remote ,2002, 40(4) :980-982. 被引量:1
  • 2[2]MURGUIA J S, URIAS J. On the wavelet formalism for multifractal analysis[J]. Chaos, 2001,11(4) :858-863. 被引量:1
  • 3[5]Bertrand Guiheneuf A. Time domain characterization of 2-microlocal spaces[J]. Fractals,1994,3(2):371-378. 被引量:1

共引文献7

同被引文献153

引证文献13

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部