期刊文献+

基于SWT自适应模糊萎缩的SAR图像降斑算法

SAR images despeckling based on stationary wavelet transform and adaptive fuzzy shrinkage
下载PDF
导出
摘要 提出了基于小波域高斯混合模型贝叶斯估计模糊萎缩的SAR图像降斑算法。该算法分析了SAR图像在平稳小波变换(SWT)域中的统计模型,并用高斯混合模型对其进行描述,推导出基于贝叶斯估计的信号最小均方误差(MMSE)的模糊萎缩因子。籍此再根据小波域相邻尺度间小波系数的相关性,采用分区域模糊萎缩思想,很好地得到无斑点真实信号小波系数的估计。仿真结果表明该算法在大大抑制斑点噪声的同时,有效的保持了边缘,其性能优于改进Lee滤波,小波软阈值和SWT萎缩降斑算法。 An efficient despeckling method was proposed based on stationary wavelet translation (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients was analyzed and its performance was modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor was derived by employing the minimum mean error (MMSE) criteria with bayesian estimation. Furthermore, the ideas of region division and fuzzy shrinkage were adopted according to the interscale dependencies of the wavelet coefficients. The noise-free wavelet coefficients were estimated accurately. Experimental results show that the method is superior to the refined Lee filter,wavelet soft thresholding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation.
出处 《电波科学学报》 EI CSCD 北大核心 2006年第6期944-949,共6页 Chinese Journal of Radio Science
基金 中国博士后科学基金(J63104020156) 国防重点实验室基金(51431020204DZ0101)
关键词 SAR图像降斑 模糊萎缩因子 MMSE 划分区域 贝叶斯估计 SWT SAR image despeckling, fuzzy shrinkage factor, MMSE, region division, bayesian estimation, SWT
  • 相关文献

参考文献16

  • 1Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1980, 2(2) .156-163. 被引量:1
  • 2Kuan D T, Sawchuk A A, Strand T C. Adaptive noise smoothing filter for images with signal-dependent noise [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1985, 7(2): 165-177. 被引量:1
  • 3Kuan D T, Sawehuk A A, Strand T C. Adaptive restoration of images with speckle[J]. IEEE Trans on Acoustics Speech and Signal Processing, 1987, 35(3) : 373-383. 被引量:1
  • 4Frost V S, Stiles J A, Shanmugan K S. et al.. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1982, 4(2): 157-166. 被引量:1
  • 5Lopes A, Touzi R, NezryE. Adaptive speckle filters and scene heterogeneity[J]. IEEE Trans Geosci. Remote Sensing, 1990, 28(11): 992-1000. 被引量:1
  • 6Hagg W, Sites M. Efficient speckle filtering of SAR images[J]. Processing of the International Geoscience and Remote Sensing Symposium (IGARSS), 1994. 被引量:1
  • 7Donoho D L. De-Noising by soft-thresholding[J]. IEEE Trans. Information Theory, 1995, 41(3) : 613-627. 被引量:1
  • 8Argenti F. Speckle removal from SAR images in the undecimated wavelet domain[J]. IEEE Trans Geosci. Remote Sensing, 2002, 40(11): 2363-2374. 被引量:1
  • 9Nason G P, Silverman B W. The stationary wavelet transform and some statistical applications. Dept. Math., Univ. Bristol, U. K., Tech. Rep., BS8 1TW, 1995. 被引量:1
  • 10Chipman Kolaezyk H E, McCulloch R. Adaptive bayesian wavelet shrinkage[J]. J, Amer. Statist. Assoc., 1997, 92(6): 1413-1421. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部