期刊文献+

金融市场价格标度行为的实证研究 被引量:2

Empirical study on the scaling behavior of financial markets
下载PDF
导出
摘要 应用扩散熵方法分析道琼斯工业平均指数概率分布函数P(x,t)的标度行为,得到反映其内在特性的标度值,同时给出了不同时间尺度t下扩散过程的对数概率分布函数log10(P(x,t)),该分布函数中心符合Lévy分布,两端具有胖尾特征.由于扩散过程的概率分布函数是非Gaussian型,因此应用扩散熵方法分析其标度行为优于其他方法,而采用实数阶矩估计的标度值明显偏离扩散熵所计算的值. The concept of diffusion entropy (DE) was used to estimate the scaling behavior. With this method, the scaling value of Dow Jones industrial average index was obtained. Then, the log-probability distribution function log10 (P(x,t)) of the diffusion process was obtained by time series with different t. It obeys the centered Levy distribution and displays fat-tail property, which means that the estimating methods on the basis of moments are unavailable. However, the scaling value given by the method of fractional derivative analysis (FDA) appreciably deviates from the genuine value given by diffusion entropy.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2006年第12期1281-1284,1320,共5页 JUSTC
基金 国家自然科学基金(70271070 70471033 10472116 10532060 10547004 70571074 70571075)资助
关键词 金融复杂性 标度值 扩散熵 实数阶矩分析 financial complexity scaling value diffusion entropy fractional derivative analysis
  • 相关文献

参考文献22

  • 1Mandelbrot B B.The variation of certain speculative prices[J].The Journal of Business,1963,36 (4):394-419. 被引量:1
  • 2Mantegna R N,Stanley H E.Scaling behavior in the dynamics of an economic index[J].Nature,1995,376:46-49. 被引量:1
  • 3Mantegna R N,Stanley H E.Stock market dynamics and turbulence:parallel analysis of fluctuation phenomena[J].Physica A,1997,239 (1):255-266. 被引量:1
  • 4Lo A W,MacKinlay A C.A Non-random Walk Down Wall Street[M].Princeton,NJ:Princeton University Press,1999. 被引量:1
  • 5Wang B H,Hui P M.The distribution and scaling of fluctuations for Heng Seng index in Hong Kong stock market[J].Euro.Phys.J.B,2001,20:573-579. 被引量:1
  • 6Stanley H E,Amaral L A N,Gabaix X,et al.Similarities and differences between physics and economics[J].Physica A:Statistical Mechanics and its Applications,2001,299:1-15. 被引量:1
  • 7Sornette D.Critical Phenomena in Natural Sciences:Chaos,Fractals,Selforganization and Disorder:Concepts and Tools'[M].Berlin:SpringerVerlag,2000. 被引量:1
  • 8Lux T,Marchesi M.Scaling and criticality in a stochastic multi-agent model of a financial market[J].Nature,1999,397(6719):498-500. 被引量:1
  • 9Cont R.Empirical properties of asset returns:stylized facts and statistical issues[J].Quantitative Finance,2001,1 (2):223-236. 被引量:1
  • 10Zhou T,Zhou P L,Wang B H,et al.Modeling stock market based on genetic cellular automata[J].Int.J.Mod.Phys.B,2004,18:2697-2702. 被引量:1

二级参考文献6

共引文献3

同被引文献21

  • 1周佩玲,杨春霞,周涛,李立文.虚拟股市建模与混沌分析[J].中国科学技术大学学报,2004,34(4):442-448. 被引量:4
  • 2Peters E E. Chaos and Order in the Capital Markets [M]. New York: John Wiley and Sons, 1996. 被引量:1
  • 3Mantegna R N, Stanley H E. An Introduction to Econophysics: Correlation and Complexity in Finance [M]. Cambridge, England: Cambridge University Press, 2000. 被引量:1
  • 4Wang B H, Hui P M. The distribution and scaling of fluctuations for Hang Seng index in Hong Kong stock market[J].European Physical Journal B, 2001, 20 (4) :573-579. 被引量:1
  • 5Sornette D. Critical Phenomena in Natural Sciences: Chaos, Fractals, Self-organization and Disorder.. Concepts and Tools[M]. Heidelberg: Springer, 2004. 被引量:1
  • 6Jeong H, Mason S P, Barabasi A L, et al. Lethality and centrality in protein networks[J]. Nature, 2001, 411 (6 833): 41-42. 被引量:1
  • 7Albert R, Barabdsi A L. Statistical mechanics of complex networks [J]. Reviews of Modern Physics, 2002, 74(1):47-97. 被引量:1
  • 8Newman M E J. The structure and function of complex networks[J].SIAM Review, 2003, 45(2) : 167-256. 被引量:1
  • 9Eguiluz V M, Chialvo D R, Cecchi G A, et al. Scale- free brain functional networks [J]. Physical Review Letters, 2005, 94(1): 018102(1-4). 被引量:1
  • 10Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[J].Nature, 1998, a93 (6 684) : 440-442. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部