期刊文献+

拓扑空间中的弱R-KKM映射—交定理和极大极小不等式 被引量:1

Weakly R-KKM Mappings—Intersection Theorems and Minimax Inequalities in Topological Spaces
下载PDF
导出
摘要 在不具有任何凸性结构的一般拓扑空间中引入弱R-KKM映射,R-凸和R-β-拟凸这些新的概念.将Ky Fan匹配定理推广到一般拓扑空间中,即该文的引理1.2.利用引理1.2,在一般拓扑空间中证明了两个交定理.利用交定理,在一般拓扑空间中证明了一些Ky Fan型极大极小不等式.该文的结果推广和改进了文献中的相关结果. The concepts of weakly R-KKM mappings, R-convex and R-β-quasiconvex in general topological spaces without any convex structure are introduced. Relating to these, an extension to general topological spaces of Fan's matching theorem is obtained, namely Lemma 1.2. On this basis, two intersection theorems are proved in topological spaces. By using intersection theorems, some minimax inequalities of Ky Pan type are also proved in topological spaces. The results generalize and improve the corresponding results in the literature.
作者 邓磊 杨明歌
出处 《应用数学和力学》 CSCD 北大核心 2007年第1期92-98,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10471113) 重庆市科委自然科学基金资助项目(CSTC 2005BB2097)
关键词 弱R-KKM映射 R-凸 R-β-拟凸 广义R-KKM映射 weakly R-KKM mapping R-convex R-β-quasiconvex generalized R-KKM mapping
  • 相关文献

参考文献12

  • 1Knaster B,Kuratowski C,Mazurkiewicz S.EinBeweis des fixpunktsatzes fur n-dimensionale simplexe[J].Fund Math,1929,14(1):132-137. 被引量:1
  • 2Fan K.A generalization of Tychonoff's fixed point theorem[J].Math Ann,1961,142(3):305-310. 被引量:1
  • 3Park S.Generalizations of Ky Fan's matching theorems and their applications[J].J Math Anal Appl,1989,141(1):164-176. 被引量:1
  • 4Chang T H,Yen C L.KKM property and fixed point theorems[J].J Math Anal Appl,1996,203(1):224-235. 被引量:1
  • 5Lin L J,Ko C J,Park S.Coincidence theorems for set-valued mapps with G-KKM property on generalized convex space[J].Discuss Math Differential Incl,1998,18(1):69-85. 被引量:1
  • 6Balaj M.Weakly G-KKM mappings,G-KKM property,and minimax inequalities[J].J Math Anal Appl,2004,294(1):237-245. 被引量:1
  • 7Deng L,Xia X.Generalized R-KKM theorems in topological spaces and their applicatons[J].J Math Anal Appl,2003,285(2):679-690. 被引量:1
  • 8Park S,Kim H.Admissible classes of multifunctions on generalized convex spaces[J].Proc Coll Natur Sci Seoul National University,1993,18(1):1-21. 被引量:1
  • 9Shih M H.Covering properties of convex sets[J].Bull London Math Soc,1986,18(1):57-59. 被引量:1
  • 10Park S,Kim H.Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(2):551-571. 被引量:1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部