期刊文献+

信号源识别的相干函数法 被引量:33

Coherence Functions Method for Signal Source Identification
下载PDF
导出
摘要 实际工程中所采集的多个信号往往不满足独立性,而且独立信号源的个数也常常是未知的,针对此问题,提出一种基于相干函数分析的振动信号源识别方法。该方法可用于独立、非独立以及未知独立的信号源识别。对于检测到的振动信号,用虚相干函数中的虚输入矩阵确定信号源独立个数,并以此判断信号源是否独立。对于非独立信号源,提出一种优先级排序的滤波器法。在进行优先级排序后,用重相干函数检测是否有重要信号源被遗漏,然后分别用常相干函数和偏相干函数对独立信号源和非独立信号源进行识别。随机信号的仿真试验说明,基于相干函数分析的振动信号源识别方法对信号源的识别具有满意的效果。 In practical engineering, several signals collected do not often suffice to independence, and the number of independent signal sources is also unknown. The paper introduced a method on the basis of coherence function analysis about vibration signal sources. For the detected signals, virtual input matrix in virtual coherence function was used to determine the number of independent signal sources and independence among them. For dependent signal sources, a filter method for priority ordering was developed. After the priority ordering, multiple coherence functions were adopted to detect whether important signal sources were lost, then independent and dependent signal sources were distinguished respectively by ordinary coherence function and partial coherence function. The simulation testing of random signals suggests that the method is effective for signal source identification.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第1期95-100,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50675099) 航空科学基金资助项目(04I52066)
关键词 相干函数 偏相干函数 虚相干函数 优先级 coherence function partial coherence function virtual coherence function priority
  • 相关文献

参考文献10

  • 1沈甦,韩秀苓.相干技术和噪声源识别的实验研究[J].电声技术,1994,18(12):2-9. 被引量:10
  • 2刘培晨,戈升波.利用偏相干函数识别振动派和噪声源[J].山东纺织工学院学报,1994,9(4):58-64. 被引量:6
  • 3Rosenberg J R, Halliday D M, Breeze P, et al.Identification of Patterns of Neuronal Connectivity-partial Spectra, Partial Coherence, and Neuronal Interactions[J]. Journal of Neuroscience Methods, 1998,83(1):57-72. 被引量:1
  • 4Park J S, Kim K J. Source Identification Using Multi- input/Single - output Modeling and Causality Checking of Correlated Inputs[J]. Journalof Vibration and Acoustics, 1994, 116 (4) : 232-236. 被引量:1
  • 5Bendat J S. Solutions for the Multiple Input/Output Problem[J]. Journal of Sound and Vibration, 1976,44(3) :311-325. 被引量:1
  • 6刘琚,杜正锋,梅良模.基于Wigner-Ville分布的非平稳信号盲分离[J].山东大学学报(理学版),2003,38(1):73-75. 被引量:8
  • 7Bae B K, Kim K J. A Hilbert Transform Approach in Source Identification Via Multiple input Single-Output Modeling for Correlated Inputs [J ].Mechanical Systems and Signal Processing, 1998,12(4):501-513. 被引量:1
  • 8Murty S K, Patricia D, Bernhard R J, et al. A Technique to Determine the Number of Incoherent Sources Contributing to the Response of a System[J]. Mechanical Systems and Signal Processing,1994,8 (4) : 363-380. 被引量:1
  • 9郑绪,郑文忠.电测车车厢底板振源的偏相干识别[J].农业工程学报,1995,11(2):81-85. 被引量:3
  • 10Park J S, Kim K J. Determination of Priority among Correlated Inputs in Source IdentificationProblems [J]. Mechanical Systems and Signal Processing, 1992,6(6) :491-502. 被引量:1

二级参考文献12

  • 1许其宏.声源识别的偏相干函数计算[J].声学学报,1989,14(5):377-382. 被引量:4
  • 2Ali MANSOUR, Allan Kardec BARROS , Noboru OHNISHI.Blind Separation of Sources: Methods, Asstanptiom and Applicatiom[J]. Ieice Tram Fundamentals, 2000; E83-A (8):161. 被引量:1
  • 3Jutten C, Heroult J. Blind separation of sources, Part I: Anadaptive algorithm based on neuromimefic architecture[J]. Signal Processing, 1991; 24:1-10. 被引量:1
  • 4Moreau E, Thirion-Moreau N. Non symmetrical contrasts forsource separation[J]. IEEE Trans Signal Processing, 1999; 78(8) : 2241-2253. 被引量:1
  • 5Cardoso J F. Infomax and maximmn likelihood for blind source separation[ J]. IEEE Signal Processing Letters, 1997;4 (4) :112-114. 被引量:1
  • 6Belouchrani A, Amin M G. Blind source sepmmion based on time-frequency signal relxesentafiom[J]. IEEE Transactions on Signal Processing, 1998; 46(11): 2888-2897. 被引量:1
  • 7Tong L, Liu R, Soon V C, et al. Indeteminacy and Identifiability of Blind Identification[J]. IEEE Tram on Circuits and systems, 1991; 38(5): 499-506. 被引量:1
  • 8Cohen L. Time-Frequency Analysis[M]. Englewood Cliffs,NJ: PrenticeHall, 1995. 被引量:1
  • 9Cardoso J F. Blind Beamforming for Non-Gaussian Signals[J]. IEE Proceeclings-F, 1993;140 (6): 362-370. 被引量:1
  • 10Belouchrani A, Abed-Meraim K, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics[J].IEEE Transactions on Signal Processing, 1997; 45(2):434-444. 被引量:1

共引文献20

同被引文献262

引证文献33

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部