期刊文献+

非Lipschitz条件下倒向随机微分方程解的稳定性 被引量:1

A stability theorem of the solutions to backward stochastic differential equations under non-Lipschitz condition
下载PDF
导出
摘要 证明了倒向随机微分方程列ytε=ξε+T∫tfε(s,yεs,zεs)ds-∫Tt[gε(s,ysε)+zsε]dws,ε0,t∈[0,T]在非Lipschitz条件下其解的稳定性;使用的主要工具是Bihari不等式的一个推论. A stability theorem of the solutions to the following backward stochastic differential equations y^εt=ξ^ε+∫^T t f^ε(s,y^ε s,z^ε s)ds-∫^T t[g^ε(s,y^εs)+z^ε s]dws,ε≥0,t∈[0,T]under non-Lipschitz condition is proved. The main tool used is a corollary of the Bihari inequality.
作者 任永 秦衍
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2006年第6期32-35,共4页 Journal of Shandong University(Natural Science)
基金 安徽省教育厅自然科学基金资助项目(2006kj251B) 安徽师范大学科研专项基金资助项目(2006XZX08) 安徽师范大学博士科研启动基金资助项目
关键词 倒向随机微分方程 稳定性 BIHARI不等式 backward stochastic differential equations stability Bihari inequality
  • 相关文献

参考文献5

  • 1Pardoux E,Peng S.Adapted solution of a backward stochastic differential equation[J].System and Control Letters,1990,14:55 ~ 61. 被引量:1
  • 2El Karoui N,Peng S,Quenez M C.Backward stochastic differential equations and applications to optimal control[J].Mathematical Finance,1997,7:1~71. 被引量:1
  • 3Ying H,Peng S.A stability theorem of backward stochastic differential equations and its application[J].Paris:C R A S,Serie 1,1997,324:1 059 ~ 1 064. 被引量:1
  • 4Mao X.Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients[J].Stochastic Processes and their Applications,1995,58:281 ~ 292. 被引量:1
  • 5Bihari I.A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations[J].Acta Math Acad Sci Hungar,1956,7:71 ~ 94. 被引量:1

同被引文献9

  • 1Pardoux E,Peng S.Adapted solution of a backward stochastic differential equation[J].System and Control Letters,1990,14:55-61. 被引量:1
  • 2El Karoui N,Peng S,Quenez M C.Backward stochastic differential equation sand applications to optimal control[J].Mathematical Finance,1997,7:1-71. 被引量:1
  • 3Hu Y,Peng S.A stability theorem of backward stochastic differential equations and its applications[J].Paris:CRAS,serie Ⅰ,1997,324:1059-1064. 被引量:1
  • 4Mao X.Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients[J].Stochastic Processes and Their Applications,1995,58:281-292. 被引量:1
  • 5Tang S,Li X.Necessary condition for optimal control of stochastic systems with random jumps[J].SIAM J Control Optim,1994,32:1447-1475. 被引量:1
  • 6Situ R.On solutions of backward stochastic differential equations with jumps and applications[J].Stochastic Processes and Their Applications,1997,66:209-236. 被引量:1
  • 7Situ R.Backward Stochastic Differential Equations With Jumps and Applications[M].Guangzhou:Guangdong Science and Technology Press,2000. 被引量:1
  • 8Bihari I.A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations[J].Acta Math Acad Sci Hungar,1956,7:71-94. 被引量:1
  • 9李娟.非Lipschitz条件下的带跳的倒向随机微分方程[J].山东大学学报(理学版),2003,38(3):10-14. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部