期刊文献+

基于相空间重构的同业拆借利率混沌特性研究 被引量:1

A Study on the Chaotic Characteristics for Interbank Rate Based on Phrase Space Reconstruction
下载PDF
导出
摘要 同业拆借利率在整个金融市场的利率结构中具有导向作用,因此对同业拆借利率波动的研究具有重要意义。本文基于相空间重构技术对我国银行间同业拆借利率进行了实证研究,通过关联维数和Kolmogorov熵这两个指数来研究我国银行间同业拆借利率的混沌特征。计算结果表明,银行间同业拆借利率具有混沌特性,这使得对同业拆借利率的长期预测成为不可能。 Interbank rates have important effects on other interest rates in the financial market, and therefore it is very important to research the fluctuation of interbank rate. Based on phrase space reconstruction, the paper gives empirical analysis on chaos in China interbank offered rate. The paper analyzes chaotic characteristics of China interbank offered rate by correlation dimension and Kolmogorov entropy. The results demonstrate that in- terbank rate has chaotic properties,which make the long term forecast impossible.
出处 《中国管理科学》 CSSCI 2006年第6期140-143,共4页 Chinese Journal of Management Science
关键词 同业拆借利率 混沌 关联维数 相空间重构 interbank rate chaos correlation dimension phrase space reconstruction
  • 相关文献

参考文献15

二级参考文献65

  • 1[1]Packard N H, Crutchfield J P, Farmer J D. Geometry from a Time Series[J]. Physical Review Letters,1980,45:712-716. 被引量:1
  • 2[2]Takens F. Detecting Strange Attractors in Turbulence[A]. In:Rand D,Young L S eds.Dynamical Systems and Aturbulence, Lecture Notes in Mathematics [C]. New York:Springer-Verlag,1981.336-381. 被引量:1
  • 3[3]Lai Y C, Lerner D. Effective Scaling Regime for Computing the Correlation Dimension from Chaotic Time Series[J]. Physica D,1998,115:1-18. 被引量:1
  • 4[4]Theiler J,Eubank S. Testing for Nonlinearity in Time Series: The Method of Surrogate Data[J]. Physica D,1992,58:77-94. 被引量:1
  • 5[5]Kugiumtzis D, Lillekjendlie B. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series the Role of the Time Window Length[J]. Physica D,1996,95:13-28. 被引量:1
  • 6[6]Cao Liang-yue, Alistair Mees. Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series[J].Physica D,1997,110:43-50. 被引量:1
  • 7[7]Abarbanel, Henry D I, Reggie B. The Analysis of Observed Chaotic Data in Physical Systems[J]. Rev Mod Phys, 1993,65(4):1331-1392. 被引量:1
  • 8[8]Wayland R, Bromley D, Pickett D. Recognizing Determinism in a Time Series[J].Phys Rev Lett,1993,70(5):580-582. 被引量:1
  • 9[9]Grassberger P, Procaccia I. Measuring the Strangeness of Strange Attractors [J]. Physica D,1983,9:189-208. 被引量:1
  • 10[10]Eckmann J P, Kamphorst S O, Ruelle D. Lyapunov Exponents from Time Series[J]. Phys Rev A,1986,34: 4971-4979. 被引量:1

共引文献53

同被引文献18

  • 1郑宝安.重新审视混业经营风险及其监管模式——基于协同理论视角的分析[J].新金融,2008(12):40-43. 被引量:6
  • 2易宪容;黄少军.现代金融理论[M]北京:中国金融出版社,2005137-177. 被引量:1
  • 3李士勇.非线性科学与复杂性科学[M]哈尔滨:哈尔滨工业大学出版社,20063-8. 被引量:1
  • 4Gulko L. The entropy theory of bond option pricing[J].International Journal of Theoretical and Applied Finance,2002,(04):355-384.doi:10.1142/S021902490200147X. 被引量:1
  • 5Peters E. Chaos and order in the capital market[M].New York:John Wiley and Sons,Inc,1991.112-113. 被引量:1
  • 6E Panas. Long memory and chaotic models of prices on the london medal exchange[J].Research Policy,2001,(27):235-246. 被引量:1
  • 7Jan Frederik Slijkerman,Dirk Schoenmaker. Risk diver sification by European financial conglomerates[EB/OL].http://ideas.rePee.org/P/dgr/uvatin/20050110.html,2005. 被引量:1
  • 8Emre Ozdenoren,KathyYuan. Feedback effects and asset prices[J].Journal of Finance,2008,(04):1939-1963. 被引量:1
  • 9Koutmos,Saidi R. Positive feedback trading in emerging capital markets[J].Applied Finencial Economics,2001,(11):291-297. 被引量:1
  • 10刘超.系统科学范式下的金融理论研究[N]光明日报(理论版),2010. 被引量:1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部