期刊文献+

一种假设验证框架下的实时道路车辆检测方法 被引量:1

On-Road Vehicle Detection Approach Based on Hypothesis-Validation Structure
原文传递
导出
摘要 介绍一种基于Gabor特征和多分辨率的车辆检测方法,该方法首先在假设产生阶段根据道路场景图像的消失点确定图像的兴趣区域,以垂直和水平边缘为依据产生相应兴趣区域的假设链,最后将各兴趣区域假设链合并,产生最终的假设,验证阶段用支撑向量机分类器验证假设正确与否,在保证鲁棒性的同时,提高实时性,此方法在假设产生阶段大大减少非兴趣区域对系统计算资源的消耗,减少计算负担,且在假设验证阶段有效减少伪目标对检测率的影响。实验表明,本文算法处理速度可达20帧/s,检测率在90%以上。 A vehicle detection approach based on Gabor feature and multiresolution hypothesis-verification structure is proposed. The proposed approach includes two basic phases. Firstly, the Regions of Interest (ROD in an image are determined according to the lane vanishing points. Then a hypothesis list in each ROI is created according to the vertical edges and horizontal edges. Finally, a hypothesis list for the whole image is obtained by combining these three lists. In the hypothesis validation phase, a vehicle validation approach using Support Vector Machine ( SVM ) is proposed. The proposed algorithm decreases the computational cost by eliminating un-interesting area, and in the hypothesis verification phase, the positive false is low. The experimental results show that the average right detection rate reaches 90% and the execution speed is 20fps using a Pentium(R) 4 CPU 2.4GHz.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第6期722-726,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金优秀创新群体资助项目(No.60021302)
关键词 车辆检测 假设验证 GABOR滤波器 支撑向量机 Vehicle Detection, Hypothesis and Validation, Gabor Filter, Support Vector Machine
  • 相关文献

参考文献11

  • 1Zheng Nanning, Tang Shuming, Cheng Hong, et al. Toward Intelligent Driver-Assistance and Safety Warning System. IEEE Intelligent Systems, 2004, 19(2): 8-11 被引量:1
  • 2Sun Zehang, Miller R, Bebis G, et al. A Real-Time Preerash Vehicle Detection System//Proc of the 6th IEEE Workshop on Applications of Computer Vision. Orland, USA, 2002: 171-176 被引量:1
  • 3Broggi A, Cerri P, Antonello P C. Multi-Resolution Vehicle Detection Using Artificial Vision// Proc of the IEEE International Symposium on Intelligent Vehicle. Parma, Italy, 2004: 310-314 被引量:1
  • 4Du Y, Papanikolopouloa N P. Real-Time Vehicle Following through a Novel Symmetry-Based Approach//Proc of the IEEE International Conference on Robotics and Automation. Albuquerque, USA, 1997, Ⅳ: 3160-3165 被引量:1
  • 5Batavia P H, Pomerleau D E, Thorpe C E. Overtaking Vehicle Detection Using Implicit Optical Flow//Proc of the IEEE Conference on Intelligent Transportation System, Boston, USA, 1997:729-734 被引量:1
  • 6Kutsuma Y, Yaguchi H, Hamamoto T. Real-Time Lane Line and Forward Vehicle Detection by Smart Image Sensor// Proc of the IEEE International Symposium on Communications and Information Technology.Sapporo, Japan, 2004, Ⅱ: 957-962 被引量:1
  • 7Rasmusson C, Grouping Dominant Orientations for Ill-Structured Road Following // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅰ: 470-477 被引量:1
  • 8Gabor D. Communication Theory and Physics. IEEE Trans on Information Theory, 1953, 1(1): 48-59 被引量:1
  • 9Sun Zehang, Miller R, Bebis G. On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization. IEEE Trans on Intelligent Transportation Systems, 2005, 6(2) : 125-137 被引量:1
  • 10Li Li, Song Jingyan, Wang Feiyue, et al. IVS 05: New Developments and Research Trends for Intelligent Vehicles. IEEE Intelligent Systems, 2005, 20(4): 10-14 被引量:1

同被引文献21

  • 1金立生,王荣本,Bart Van Arem,郭烈.先进驾驶员辅助系统中的车辆探测研究综述[J].汽车工程,2007,29(2):132-136. 被引量:4
  • 2文学志,赵宏,王楠,袁淮.基于知识和外观方法相结合的后方车辆检测[J].东北大学学报(自然科学版),2007,28(3):333-336. 被引量:5
  • 3李云翀,何克忠,贾培发.基于阴影特征和Adaboost的前向车辆检测系统[J].清华大学学报(自然科学版),2007,47(10):1713-1716. 被引量:19
  • 4Sun Zehang, Bebis George, Miller Ronald. On-road Vehicle De- tection: A Review[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2006,28 (5) :694-711. 被引量:1
  • 5Lin Che-Chung, Lin Chi-Wei, Huang Dau-Chen, et al. Design a Support Vector Machine-based Intelligent System for Vehicle Driv- ing Safety Warning[ C]. Proceedings of IEEE International Confer- ence on Intelligent Transportation Systems ,2008:938-943. 被引量:1
  • 6Khammari A, Nashashibi F, Abramson Y, et al. Vehicle Detec- tion Combining Gradient Analysis and Adaboost Classification[ C ]. IEEE Proceedings of the International Conference on Intelligent Transportation Systems, 2005 : 66-71. 被引量:1
  • 7Kim S Y, Oh S Y, Kang J K, et al. Front and Rear Vehicle De- tection and Tracking in the Day and Night Times Using Vision and Sonar Sensor Fusion [ C ]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:2173-2178. 被引量:1
  • 8Alcantarilla P, Bergasa L, Jimenez P, et al. Night Time Vehicle Detection for Driving Assistance Lightbeam Controller [ C ]. Pro- ceedings of IEEE Intelligent Vehicles Symposium,2008:291-296. 被引量:1
  • 9Chern Ming-Yang, Hou Ping-Cheng. The Lane Recognition and Vehicle Detection at Night for a Camera-assisted Car on Highway [ C]. Proceedings of IEEE International Conference on Robotics & Automation ,2003:2110-2115. 被引量:1
  • 10Wang Chun-Che, Huang Shih-Shinh, Ful Li-Chen, et al. Driver Assistance System for Lane Detection and Vehicle Recognition with Night[ C ]. Proceedings of IEEE International Conference on Intelligent Robots and Systems,2005:3530-3535. 被引量:1

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部