期刊文献+

一种新的步长等变化自适应算法 被引量:1

A New Step-size EASI Algorithm
下载PDF
导出
摘要 定义了描述信号分离状态的一种测度,并在认真分析相关固定步长和变步长EASI算法的基础上,提出了一种新的步长自适应等变化自适应(EASI)算法。该算法步长是基于分离状态的,其学习速率由信号的分离程度自适应地选取,因而能很好地解决收敛速度和稳态误差之间的矛盾。计算机仿真结果与理论分析相一致,证实了该算法明显优于传统的EASI算法。 This paper definites a measurement method to describe the signal separation state. After detailed analyzing relevant fixed step-size and variable step-size EASI algorithms, a new self-adaptive step-size EASI algorithm is presented. The step-size of this algorithm is based on separation state,its learning ratio is chosen adaptively according to separating degree, therefore it can resolve the contradiction between the convergence speed and misadjustment error. Computer simulation result and the theoretical analysis is identical, which confirms the algorithm is superior to traditional EASI algorithms.
作者 姜晖 李广彪
出处 《舰船电子对抗》 2006年第6期57-61,共5页 Shipboard Electronic Countermeasure
关键词 盲源分离 变步长 自适应 分离状态 blind source separation variable step-size self adaptive separating state
  • 相关文献

参考文献9

  • 1朱孝龙,张贤达,冶继民.基于自然梯度的递归最小二乘盲信号分离[J].中国科学(E辑),2003,33(8):741-748. 被引量:15
  • 2[2]Douglas S C,Cichocki A.Adaptive step-size techniques for decorrelation and blind source separateon[A].Proceedings of the Asilomar conference on Signals,Systems and Computers,Pacific Grove[C],CA,1998:1191-1195. 被引量:1
  • 3[3]Cichocki A,Amari S.Adaptive blind signal and image processing:learning and applications[M].John Wiley & Sons,Ltd,2002. 被引量:1
  • 4[4]Amari S,Cichocki A,Yang H H.A new learning algorithms for blind signal separateion[J].Neural Information Processing Systems,1996 (8):757-763. 被引量:1
  • 5[5]Common P.Independent component analysis,a new concept?[J] Signal Processing,1994,36 (3):287-314. 被引量:1
  • 6[6]Cardoso J F,Laheld B.Equivariant adaptive source separation[J].IEEE Transactions on Signal Processing,1996,44(12):3017-3030. 被引量:1
  • 7朱孝龙,保铮,张贤达.基于分阶段学习的盲信号分离[J].中国科学(E辑),2002,32(5):693-703. 被引量:52
  • 8[8]Cardoso.easi_demo.m.http://www.tsi.enst.fr/~ Cardoso/Algo/Easi 被引量:1
  • 9[9]Chambers J A,Jafari M G,McLaughlin S.Variable step-size EASI algorithm for sequential blind source separation[J].IEE Electronics Letters,2004,40(6):393-394. 被引量:1

二级参考文献37

  • 1Yang H H, Amari S. Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information. Neural Computation, 1997, 9(5): 1457 - 1482. 被引量:1
  • 2Cardoso J F, Laheld B. Equivariant adaptive source separation. IEEE Trans Signal Processing, 1996, 44(12): 3017 - 3030. 被引量:1
  • 3Pajunen P, Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA. Int J of Neural Systems,1998, 8(12): 601 - 612. 被引量:1
  • 4Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches.Neurocomputing, 1998, 22:5 - 20. 被引量:1
  • 5Haykin S. Adaptive Filter Theory. 3rd Edition. New Jersey: Prentice Hall, 1996. 被引量:1
  • 6Eleftheriou E, Falconer D. Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans,ASSE 1986, 34(5): 1097 - 1109. 被引量:1
  • 7Poor H, Wang X D. Code-aided interference suppression for DS-CDMA communications, Part Ⅱ: Parallel blind adaptive implementations. IEEE Trans Comm, 1997, 45(9): 1112 - 1122. 被引量:1
  • 8Douglas S C. Self-stabilized gradient algorithms for blind source separation with orthogonality constraints. IEEE Trans Neural Networks, 2000, 11(6): 1490- 1497. 被引量:1
  • 9Amari S. Natural gradient learning for over and undercomplete bases in ICA. Neural Computation, 1999, 11 (8): 1875 - 1883. 被引量:1
  • 10Zhu X L, Zhang X D. Adaptive RLS algorithm for blind source separation using a natural gradient. IEEE Signal Processing Letters, 2002, 9(12): 432 - 435. 被引量:1

共引文献57

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部