期刊文献+

Van der Pol非线性系统的扰动与稳定性分析

Analysis of disturbance and stability for Van der Pol system
下载PDF
导出
摘要 非线性动力学发展过程中有三大著名方程,其中之一的V an der Po l方程,迄今一直都是理论与应用领域内探讨的热门课题.本文利用非线性系统相平面分析法和数学软件M athem atica 5.1,对V an der Po l方程的奇点、极限环的性质以及稳定性[1]展开较全面的探讨,从而获得该非线性系统受参数扰动的运动性状况以及在奇点附近轨线的运动规律. Van der Pol equation is one of three famous equations in nonlinear dynamics, and is also a hot topic in both theory and application. The singular point and property of limit cycle of Van der Pol equation are analyzed thoroughly. The motional state of Van der Pol system is obtained, and the system is disturbed by parameter μ. The motional rules of the orbits around singular points are presented.
作者 陈誌敏
出处 《黄冈师范学院学报》 2006年第6期26-31,共6页 Journal of Huanggang Normal University
关键词 稳定性 极限环 特征根 非线性微分方程 stahility limit cycle eigenvalue nonlinear differential equation
  • 相关文献

参考文献6

二级参考文献9

  • 1丁同仁 李承治.常微分教程[M].北京:高等教育出版社,1991.40-43. 被引量:2
  • 2[1]Burton, T. A., Stability and periodic solutions of ordinary and functional differential equations [M], Academic Press, Orlando, 1985. 被引量:1
  • 3[2]Coddington, E. A. & Levinson, N., Theory of ordinary differential equations [M], McGrawHill, New York, 1955. 被引量:1
  • 4[3]Coppel, W. A., Stability and asymptotic behavior of differential equations [M], Heath Mathematical Monograghs, D.C. Heath and Company, Boston, 1965. 被引量:1
  • 5[4]Lozinski, S. M., Error estimates for numerical integration of ordinary differential equations [J], Izv. Vyssh. Uchebn. Zaved. Mat., 5(1958), 52-90. 被引量:1
  • 6Coppel W A.Stability and Asymptotic Behavior of Differential Equations[M].Heath Mathematical Monographs,Boston: D C Heath and Company,1965. 被引量:1
  • 7Lozinskii S M.Error estimates for numerical integration of ordinary differential equations[J].Izv Vvssh Uchebn Zaved Mat,1958,5:52-90. 被引量:1
  • 8Burton T A.Stability and Periodic Solutions of Ordinary and Functional Differential Equations[M].Orlando:Academic Press,1985. 被引量:1
  • 9武冬.线性常微分方程系统的稳定性[J].数学年刊(A辑),2003,24(1):91-100. 被引量:7

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部