期刊文献+

具有自适应随机惯性权重的PSO算法 被引量:13

Particle swarm optimization with self-adaptive stochastic inertia weight
下载PDF
导出
摘要 通过对标准PSO算法中惯性权重和全局最好值的分析,提出了一种根据全局最好值的变化而自适应变化的随机惯性权重的方法。通过对5个典型的Benchmark函数的测试,结果表明此方法在收敛速度和全局收敛性方面都较线性递减的惯性权重的方法有所改进。最后,将改进的PSO算法应用于分类问题,与标准PSO算法与C4.5的结果相比,分类精度和速度都有所提高。 Based on the analysis of inertia weight and global best fitness of the standard PSO, a PSO method is described with selfadaptive stochastic inertia weight by the change of the global best fitness (WPSO). By the experiments of five Benchmark function, the results show the performance of WPSO improved more clearly than that of the standard PSO. Finally, the WPSO are applied to mine classification and experiment results compared with C4.5 on 5 data sets indicate better accuracy and more rapid speed.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第24期4677-4679,4706,共4页 Computer Engineering and Design
基金 教育部重点科研基金项目(204018)
关键词 PSO算法 惯性权重 全局最好值 自适应随机惯性权重 分类 PSO algorithm inertia weight global best fitness self-adaptive stochastic weight classification
  • 相关文献

参考文献8

  • 1曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 2Van den Bergh,Engelbrecht A.A new locally convergent particle swarm optimizer[C].IEEE International Conference on Systems,Man,and Cybernetics,2002. 被引量:1
  • 3曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:158
  • 4Asanga Ratnaweera,Saman K Halgamuge.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Transaction on Evolutionary computation,2004,8(3):240-255. 被引量:1
  • 5王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:350
  • 6Shi Y H.Experimental study of particle swarm optimization[R].Orlando,FL:Proceeding of SCI Conference,2000. 被引量:1
  • 7University of California.Irvine repository of machine learning database[DB/OL].ftp://ics.uci.edu in the/pub/machine-learning-databases directory. 被引量:1
  • 8何劲松,郑浩然,王煦法.从熵均值决策到样本分布决策[J].软件学报,2003,14(3):479-483. 被引量:12

二级参考文献18

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962 被引量:1
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944 被引量:1
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73 被引量:1
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30 被引量:1
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001 被引量:1
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001) 被引量:1
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975 被引量:1
  • 8[1]Blummer A, Ehrenfeucht A, Haussler D, Warmuth MK. Occam's Razor. Information Processing Letters, 1987,24:377~380. 被引量:1
  • 9[2]Murphy PM, Pazzani MJ. Exploring the decision forest. In: Proceedings of the Computational Learning and Natural Learning Workshop. Provincetown, MA, 1993. 10~12. 被引量:1
  • 10[3]Qualian JR. Induction of decision trees. Machine Learning, 1986,1:81~106. 被引量:1

共引文献517

同被引文献133

引证文献13

二级引证文献284

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部