期刊文献+

具有扩散和变时滞的非自治捕食与被捕食系统的持续性 被引量:1

Persistence for Nonautonomous Predator-prey System with Diffusion and Varying Time Delay
下载PDF
导出
摘要 研究了一类具有扩散和变时滞的非自治捕食与被捕食系统,根据种群生态系统一致持续性的定义,构造了一有界紧域,证明了系统在该有界紧域下的一致持续性,且此一致持续性与扩散率无关. A nonautonomous predator-prey system with diffusion and varying time delay is established. According to the definition of uniform persistence, a bounded compact region is constructed. It is proved that the system is permanent in this region and its persistence is irrespective of the diffusion.
作者 曹珊 杜雪堂
出处 《湖南师范大学自然科学学报》 EI CAS 北大核心 2006年第4期23-26,共4页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10071018)
关键词 非自治捕食与被捕食系统 扩散 变时滞 持续性 nonautonomous predator-prey system diffusion varying time delay persistence
  • 相关文献

参考文献5

二级参考文献18

  • 1Takeuchi Y. Global stability in generalized Lotka-Volterra diffusion system. J Math Appl , 1986,116: 209-221. 被引量:1
  • 2Takeuchi Y. Diffusion effect on stability of Lotka-Volterra models. Bull Math Biol , 1986, 48:585-601. 被引量:1
  • 3Yang Kuang, Takeuchi Y. Predator prey dynamics in models of prey dispersal in two patch environments. Math Biosci , 1994, 120: 77-98. 被引量:1
  • 4Zhang J, Chen L S. Periodic solutions of single-species nonautonomous diffusion modeling. 1996,23(7): 18-27. 被引量:1
  • 5Song X, Chen L S. Periodic and global stability for nonautonomous Predator-Prey system with diffusion and time delay. Computers Math Applic , 1988. 35(6): 33-40. 被引量:1
  • 6Beretta E, Takeuchi Y. Global stability of single species diffusion Volterra models with continuous time. Bull Math Biol, 1987, 49: 413-448. 被引量:1
  • 7Beretta E, Solimano F and Takeuchi Y. Globle stability and periodic orbits for two patch predatorprey diffusion delay models. Math Biosciences. 1987, 85: 153-183. 被引量:1
  • 8Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynamics. Netherlands: Kluwer Academic, Dordrecht, 1992. 被引量:1
  • 9Song Xinyu, Chen Lansun. Conditions for global attractivity of n-patches predater-prey dispersiondelay models. J Math Anal Appl, 2001, 253: 1-15. 被引量:1
  • 10Beretta E and Solimano F. Global stability and periodic orbits for two patch predator-prey diffusion delay model. Math Biosci , 1987, 85: 152-183. 被引量:1

共引文献7

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部