期刊文献+

正常凸函数的U-Lagrange函数 被引量:2

The U-Lagrangian of a Proper Convex Function
下载PDF
导出
摘要 将凸函数的UV-分解理论推广到正常凸函数,借助于凸分析中的凸集、凸锥以及回收锥的相关性质,得到对应于正常凸函数的空间分解和U-Lagrange函数及其性质,并将其应用于一般凸规划问题. For minimizing a proper convex function, this paper compares the difference of subdifferential of function f,when the initial point was taken in the relative borders and the relative interior of the effective domain. Furthermore,the uv-decomposition theory about proper convex function is studied in this paper and the sufficient condition is given,which guarantees the existence of the u-Lagrangian defined in the effective domain of the proper convex function f.
作者 王炜 陆媛
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2006年第4期385-387,共3页 Journal of Liaoning Normal University:Natural Science Edition
关键词 非光滑优化 UV-分解 u-Lagrange函数 回收锥 nonsmooth optimization uv-decomposition u-Lagrangian recession cone
  • 相关文献

参考文献2

  • 1LEMARECHAL C,OUSTRY F,SAGASTIZABAL C.The U-Lagrangian of a convex function[J].Trans Amer Math Soc,2000,352(2):711-729. 被引量:1
  • 2ROCKAFELLAR R T.Convex Analysis[M].Princeton:Princeton University Press,NJ,1970. 被引量:1

同被引文献10

  • 1LEMARECHAL C,OUSTRY F,SAGASTIZABAL C. The ω-Lagrangian of a convex function[J]. Trans Amer Math Soc, 2000, 352(2): 711-729. 被引量:1
  • 2WANG W,XIA Z Q,PANG L P. The Application of UV-theory to NLP[J]. Advances in Systems Science and Application,2004,4 (2) :175-180. 被引量:1
  • 3MIFFLIN R,SAGASTIZABAL C. Proximal points are on the fast track[J]. Journal of Convex Analysis,2002,9(2):563-579. 被引量:1
  • 4MIFFIN R,SAGASTIZABAL C. A υω-algorithm for convex minimization[J]. Math Program Ser B,2005,104:583-608. 被引量:1
  • 5LEMARECHAL C, SAGASTIZABAL C. Variable metric bundle methods: from conceptual to implementable forms[J]. Math Program Ser A, 1997,76 : 393-410. 被引量:1
  • 6LEMARECHAL C,SAGASTIZABAL C. Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries[J]. SIMA Journal on Optimization,1997,2(7):367-385. 被引量:1
  • 7LEMARECHAL C, OUSTRY F, SAGASTIZABAL C. The U - Langrangian of a convex function [ J ]. Trans. Amer. Math. Soc. ,2000,352:711 - 729. 被引量:1
  • 8AUBIN J P, EKELAND I. Applied Nonlinear Analysis [ J]. Wiley Math, 1984,3:214 - 220. 被引量:1
  • 9AUSLENDER A. Numerical methods for nondifferentiable convex optimization [ J ]. Mathematical Programming Study, 1987,30 : 102 - 126. 被引量:1
  • 10CLARKE F H, LEDYAEV Y S, STERN R J, et al. Nonsmooth analysis and control theory [ J ]. Springr Verlag Berlin Heideberg, 1998,5:412 - 421. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部