摘要
针对一类不确定项具有有界约束特性的非线性组合系统,基于Lyapunov稳定性理论,运用线性矩阵不等式(LM I)处理方法,提出了系统存在非线性分散鲁棒保成本控制器的充分条件。该控制器能保证闭环系统渐近稳定并且能使所给定的线性二次性能指标具有确定的上界,并利用LM I方法给出了设计该控制器的一种算法。仿真实例表明,组合系统的所有状态均能很快收敛到零,该控制器是一个快速的保成本控制器,说明了所采用方法的有效性。
A sufficient condition for the existence of nonlinear robust guaranteed cost controllers is proposed via Lyapunov stability theory by using linear matrix inequalities (LMIs) approach for a class of nonlinear composite systems with the uncertainties having upper-bound. The controllers guarantee that the given quadratic cost function is bounded based on the asymptotical stability of the closed-loop systems. A designing algorithm of the controllers is proposed via LMI. The simulation shows that all the states of the composite system converge to zero quickly and that the controller is a fast guaranteed cost controller, which verifies the validity of the method adopted in the paper.
出处
《电机与控制学报》
EI
CSCD
北大核心
2006年第6期597-600,共4页
Electric Machines and Control
基金
广东省自然科学基金资助项目(032035)
关键词
组合系统
分散鲁棒控制
成本函数
LMI
composite systems
decentralized robust control
cost function
LMI