期刊文献+

基于微血栓运动分析的微血管特征结构自动提取 被引量:1

AUTOMATED EXTRACTION OF CHARACTERISTIC STRUCTURE OF MICRO-VESSEL BASED ON MOTION ESTIMATION OF WHITE MICRO-THROMBUS
下载PDF
导出
摘要 提出了一种基于微血栓运动分析的微血管特征结构自动提取策略。提出用灰度梯度直方图统计来自动选阈的快速阈值值化算法,检测形态复杂的微血管图像边缘,抑制次要的微血管,采用低阈值双窗二次角点选择策略选取边缘曲线角点。通过微血管显微图像及其二值化图像分析,建立反映含微血栓的微血管特征结构模型,利用微血管的先验知识,给出提取微血管特征结构的算法,最后给出微血管显微图像结构的提取结果,实验证明该算法是十分有效的。含微血栓的微血管的特征结构建立,复杂的微血栓的匹配和识别问题将得到简化,微血管及微血栓的形态变化及运动估算任务得以减轻。该研究对于脑微循环障碍和老年病的基础医学研究和临床实践具有十分重要的意义。 A shrategy for automated extraction of the micro-vessel characterstic structure based on motion analysis of white micro-thrombus is presented in this paper.A fast automated choosing threshold algorithm using gray gradient-gray histogram statistics made into binary image is proved to be valid. After studying profoundly the forms of contour of non-rigid biomedital objects such as contour of micro-vessels, an algorithm of comer-point extraction of curves depicted by chain code which is so-called twice determining corner-point set with a low threshold and two window sizes is provided. Some achieved results show that the strategy is useful and helpful. To build the characteristic is useful and efficient for motion estimation of white micro-thrombus and calculation of the morphologic morphologic parameters of micro-vessel and white micro-thrombus. It is meaningful for studying cerebral micro-circulation obstacle and the veteran disease on clinic and basic medicine.
出处 《生物物理学报》 CAS CSCD 北大核心 1996年第2期289-296,共8页 Acta Biophysica Sinica
基金 国家自然科学基金
关键词 血管 微血管 微血栓 特征结构 Edge detection Chain-code curvature Corner-point extraction White micro-thrombus Micro-vessel Characteristic structure
  • 相关文献

参考文献2

  • 1李立源,模式识别与人工智能,1993年,3卷,235页 被引量:1
  • 2李介谷,计算机视觉的理论和实践,1992年 被引量:1

同被引文献35

  • 1胡匡祜,苏万芳,李翊华,黄文菊.运动红细胞形变结构的图象自动定量分析的研究[J].生物物理学报,1994,10(3):387-392. 被引量:1
  • 2李翊华,胡匡祜.细胞显微图像灰度梯度双阈值的快速分割[J].模式识别与人工智能,1995,8(4):357-362. 被引量:12
  • 3Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models[J]. International Journal of Computer Vision. 1987, 1 (4) : 321-331. 被引量:1
  • 4Bronkorsta P J H, Reinders M J T, Hendriks E A, et al. On-line detection of red blood cell shape using deformable templates [ J ].Pattern Recognition Letters, 2000, 21 (5) : 413 -424. 被引量:1
  • 5Gavrila D, Davis L. 3-D model-based tracking of humans in action : a muhi-view approach [ A ]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ], San Francisco, CA,USA, 1996:73 -80. 被引量:1
  • 6Okada R, Shirai Y, Miura J. Tracking a person with 3-D motion by integrating optical flow and depth[A]. In: The Fourth International Conference on Automatic Face and Gesture Recognition [ C ].Grenoble, France, March, 2000. 被引量:1
  • 7Bregler C. Learning and recognizing human dynamics in video sequences[Al. In: Conference on Computer Vision and Pattern Recognition [ C ].San Juan, Puerto Rico, 1997. 被引量:1
  • 8Wren C R, Clarkson B P, Pentland A P. Understanding purposeful human motion [ A ]. In: The Fourth International Conference on Automatic Face and Gesture Recognition [ C ] , Grenoble, France,March, 2000. 被引量:1
  • 9Rigoll G, Eickeler S, Muller S. Person tracking in real world scenarios using statiscal methods[ A ]. In: The Fourth International Conference on Automatic Face and Gesture Recognition [ C ].Grenoble, France, March, 2000. 被引量:1
  • 10Rosales R, Sclaroff S. Learning and synthesizing human body motion and posture [ A ]. In: The Fourth International Conference on Automatic Face and Gesture Recognition [ C ], Grenoble, France,March, 2000. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部