期刊文献+

广义最大熵回归效果分析 被引量:4

Analysis of Generalized Maximum Entropy Regression Effect
下载PDF
导出
摘要 针对广义最大熵回归方法的建模效果问题,尤其是模型中未知参数和误差项支持空间选择的不确定性问题,该文剖析了该方法的建模过程,并通过两个实例将该方法与其它建模方法的回归效果进行了对比分析。结果表明:广义最大熵回归方法的预测精度与解释能力优于最小二乘法和偏最小二乘法以及主成分方法;在先验信息缺乏的情况下,参数支持空间越大越好;误差项支持空间应在3σ与4σ之间。 Aiming at generalized maximum entropy (GME) regression effect and especially the indetermination of the choice of support space of parameter and error in the model, the modelling process of GME regression method is analyzed, and its regression effect is compared with others' effects through two cases in this paper. Results show that the forecasting precision and the explaining ability of GME method is higher than the least square method, the partial least square method and the principal component analysis. The larger the support space of parameter is, the better, under the lack of prior information, and the support space of error should be between 3σ and 4σ.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2006年第6期793-796,共4页 Journal of Nanjing University of Science and Technology
关键词 回归方法 广义最大熵 最小二乘法 偏最小二乘法 regression method generalized maximum entropy least square method partial least square method
  • 相关文献

参考文献7

  • 1[1]Marsh T L,Mittelhammer R C.Advances in econometrics,spatial and spatiotemporal econometrics[M].New York:Pace and LeSage,2004.203-238. 被引量:1
  • 2霍映宝,韩之俊.基于广义最大熵原理和遗传算法的多指标权重确定方法研究[J].数理统计与管理,2005,24(3):39-44. 被引量:16
  • 3[3]Golan A,Gzyl H.A generalized maxentropic inversion procedure for noisy data[J].Applied Mathematics and Computation,2002,127(4):249 -260. 被引量:1
  • 4[4]Lence S H,Miller D J.Estimation of multi-output production functions within complete data:A generalized maximum entropy approach[J].Eur Rev Agr Econ,2002,25(12):188-209. 被引量:1
  • 5[5]Caputo M R,Paris Q.Comparative statics of the generalized maximum entropy estimator of the general linear model[Z].Davis:Department of Agricultural and Resource Economics University of California-Davis,2000. 被引量:1
  • 6王惠文著..偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999:274.
  • 7霍映宝,韩之俊.三种有偏回归模型的比较分析[J].统计与决策,2002,18(11):9-10. 被引量:4

二级参考文献11

  • 1魏一鸣,童光煦,范体均.基于神经网络的多目标权重计算方法探讨[J].武汉化工学院学报,1995,17(4):37-41. 被引量:10
  • 2Ash Robert R.Information Theory[M].New York,Dover Publications,1990. 被引量:1
  • 3Jaynes, E .T.Information theory and statistical mechanics[J].Physical Review,1957,106,620-630. 被引量:1
  • 4Jaynes E.T. Information theory and statistical mechanics[J].Physical Review,1957,108,171-190. 被引量:1
  • 5Golan A,Judge G,Miller D.Maximum entropy econometrics:robust estimation with limited data[M].New York:john Wiley and Sons,1996. 被引量:1
  • 6Shen E Z.Perloff J M. Maximum entropy and Bayesian aproaches to the ratio problem[J].Journal of Econometrics,2001,104,289-313. 被引量:1
  • 7Lence S H. Miller D J.Estimation of Multi-Output Production Funcions with Incomplete Data:A Generalized Maximum Entropy Approach[J].Eur.Rev.Agr.Econ.1998,25:188-209. 被引量:1
  • 8Fraser I. An application of maximum entropy estimation:the demand for meat in the United Kingdom[J].Applied Economics.2000,32,;45-59. 被引量:1
  • 9马振华.现代应用数学手册,运筹学与最优化理论卷[M].北京:清华大学出版社,1998.307-370. 被引量:2
  • 10梁杰,侯志伟.AHP法专家调查法与神经网络相结合的综合定权方法[J].系统工程理论与实践,2001,21(3):59-63. 被引量:69

共引文献18

同被引文献47

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部