期刊文献+

径向基函数人工神经网络预测污水处理厂出水水质 被引量:5

Predication of wastewater treatment plant effluent quality using radial basis function neural network
下载PDF
导出
摘要 根据人工神经网络的理论和方法,建立了径向基函数神经网络模型.用镇江市征润州污水处理厂的实测数据进行模型训练和预测水质验证,采用最近邻聚类学习算法选取聚类中心,表明模型有较强非线性处理能力和逼近能力,并具有学习时间短,网络运算速度快,性能稳定等优点.通过模型预测结果和实测值的比较,发现用径向基函数神经网络模型预测污水出水水质,具有预测精度高,使用方便,适应性强等优点,因此可望将其用于污水厂出水水质的预测. The Radial Basis Function Neural Network model for predicting wastewater treatment plant effluent quality is established based on the theory and methodology of neural network. The data obtained from wastewater treatment plant were used to train and verify the model. The model demonstrates its capability to approach function and treat non--linear problem by using nearest neighbor cluster algorithm to select the clustering center. The main advantage of the RBF based model is its accuracy, time saving, fast running and stability behavior. The good agreement between predicted and measured data was observed. Because of these benefits, it is believed that the model could find application in predicting wastewater treatment plant effluent quality.
出处 《浙江工业大学学报》 CAS 2006年第6期633-636,共4页 Journal of Zhejiang University of Technology
关键词 污水厂 出水水质 径向基函数 神经网络 预测 误差分析 wastewater treatment plant effluent quality radial basis function neural network prediction error analysis
  • 相关文献

参考文献6

  • 1阎平凡 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001.. 被引量:50
  • 2张亚雷 李咏梅.活性污泥数学模型[M].上海:同济大学出版社,2002.. 被引量:33
  • 3OZER C.New tool for evaluation of performance of wastewater treatment plant:Artificial neural network[J].Process Biochemistry,2005,40:2980-2984. 被引量:1
  • 4LISBOA P G J.Neural networks current applications[M].London:International Thomson Computer Press,1992. 被引量:1
  • 5周开利,康耀红编著..神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:255.
  • 6丁涛,周惠成.基于径向基函数神经网络的预测方法研究[J].哈尔滨工业大学学报,2005,37(2):272-275. 被引量:19

二级参考文献11

  • 1中国水利部.水文情报预报规范[M].北京:中国水利水电出版社,2000.11-12. 被引量:2
  • 2BIANCHINI M, FRASCONI P, GORI M. Learning without local minima in radial basis function networks [ J ]. IEEE Transon Neural Networks, 1995, 6(3): 749 - 756. 被引量:1
  • 3CHEN S, COWAN C F N, GRANT P M. Orthogonal least squares learning algorithm for radial basis function networks [ J ]. IEEE Transactions on Neural Networks,1991, 2: 302 - 309. 被引量:1
  • 4KAVLI T. ASMOD: an algorithm for adaptive splines modeling of observation data[J]. International Journal of Control, 1993, 58:947-968. 被引量:1
  • 5BARRON A R, XIAO X. Discussion of multivariate adaptive regression splines [ J ]. Annals of Statistics,1991, 19: 67 - 82. 被引量:1
  • 6ORR M J L. Regularised center recmitment in radial basis function networks [ R ]. [ s. l. ]: Edinburgh University, 1993. 被引量:1
  • 7CHEN S, CHNG E S, ALKADHIMI K. Regularized orthogonal least squares algorithm for constructing radial basis function networks [ J ]. International Journal of Control, 1996, 64:829-837. 被引量:1
  • 8ORR M J L. Regularisation in the selection of radial basis function centers [ J ]. Neural Computation, 1995, 7(3): 606 -623. 被引量:1
  • 9BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[ M ]. New York: Plenum Press, 1981. 被引量:1
  • 10GOLUB G H, HEATH M, WAHBA G. Generalised crossvalidation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215-223. 被引量:1

共引文献99

同被引文献660

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部