期刊文献+

基于小波神经网络的煤层底板突水非线性预测方法研究 被引量:25

Study on the Non-linear Forecast Methods for Water Inrush from Coal Floor Based on Wavelet Neural Network
下载PDF
导出
摘要 针对煤层底板突水系统为一非线性动力学系统的特性,并在考察目前煤层底板突水预测方法的基础上,给出利用小波神经网络对煤层底板突水进行预测的可行性和优越性;阐述了小波神经网络的基本原理;提出和分析了基于小波神经网络的煤层底板突水预测模型及算法;并通过实例证明,应用小波神经网络解决煤层底板突水预测的可行性和优越性。研究及实践表明:小波神经网络的预测精度更高、更准确。 Directing at the non-linear dynamic characteristic of water inrush from coal floor and the weakness analysis of current forecast methods for water inrush from coal floor, a new forecast method is raised based on wavelet neural network. Firstly basic principles of wavelet neural network are described in this paper, then a forecast model for water inrush from coal floor based on wavelet neural network is raised and analyzed, finally an example is illustrated to verify the feasibility and superiority of this method. Conclusion shows that the forecast result based on wavelet neural network is more precise, which is more beneficial to the prevention and control of water inrush from coal floor in coal layer.
出处 《中国安全科学学报》 CAS CSCD 2006年第11期24-28,共5页 China Safety Science Journal
关键词 小波 神经网络 底板突水 非线性 预测 BP神经网络 wavelet neural network water inrush from seam floor non-linear forecast back-propagation neural network
  • 相关文献

参考文献9

二级参考文献41

共引文献86

同被引文献142

引证文献25

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部