摘要
论证了Newton空间中泛函F(u,gu)=f(∫u,gu)dμ,其中gpu-c|u|p≤f(u,gu)≤gup+c|u|p极小属于De Giorgi类,为其局部有界性和正则性问题的研究奠定了基础.
In this paper, we prove the minimizer of the functional F( u ,gu) in Newton space belongs to the De Giorgi class.F(u,gu)=∫f(u,gu)du,gu^p-c|u|^p≤f(u,gu)≤gu^p+c|u|^p, where c 〉 0 is a constant.The developments of locally boundness and regularity of the minimizer are based on this result.
出处
《安徽师范大学学报(自然科学版)》
CAS
2006年第6期524-528,共5页
Journal of Anhui Normal University(Natural Science)