期刊文献+

Newton空间中某类泛函极小属于De Giorgi类 被引量:2

The Minimizer of a Certain Functional in Newton Space Belongs to the De Giorgi Class
下载PDF
导出
摘要 论证了Newton空间中泛函F(u,gu)=f(∫u,gu)dμ,其中gpu-c|u|p≤f(u,gu)≤gup+c|u|p极小属于De Giorgi类,为其局部有界性和正则性问题的研究奠定了基础. In this paper, we prove the minimizer of the functional F( u ,gu) in Newton space belongs to the De Giorgi class.F(u,gu)=∫f(u,gu)du,gu^p-c|u|^p≤f(u,gu)≤gu^p+c|u|^p, where c 〉 0 is a constant.The developments of locally boundness and regularity of the minimizer are based on this result.
作者 陈平 丁建中
出处 《安徽师范大学学报(自然科学版)》 CAS 2006年第6期524-528,共5页 Journal of Anhui Normal University(Natural Science)
关键词 Newton空间 DE Giorgi类 泛函极小 Newton space De Giorgi class minimizer of functional
  • 相关文献

参考文献12

  • 1CHEEGER J.Differentiability of Lipschitz functions on metric measure spaces[J].Geom Funct Anal,1999,9:428-527. 被引量:1
  • 2HAJLASZ P,KOSKELA P.SobolevmeetsPoincaré[J].Acad Sci,1995,320:1211-1215. 被引量:1
  • 3HEINONEN J,KOSKELA P.Quasiconformal maps in metric spaces with controlled deometry[J].Acta Math,1998,181:1-61. 被引量:1
  • 4KALLUNKI S,SHANMUGALINGAM N.Modulus and continuous capacy[J].Ann Acad Sci Math,2001,26:455 -46. 被引量:1
  • 5MARCHI S.Holder continuity and Harnack inequality for De Giorgi classes related to Hormander vector fields[J].Ann Mat Pura Appl,1995,168:171-188. 被引量:1
  • 6SALOFF-COSTE L.Parabolic harnack inequailty for divergence-form second-orderdifferential operators[J].Potential Anal,1995,4:429 -467. 被引量:1
  • 7SHANMUGALINGAM N.Newtonian spaces:An extension of sobolev spaces to metric measure spaces[J].Rev Mat Iberoamericana,2000,16:243-279. 被引量:1
  • 8KILPELAINEN T,KINNUNEN J,MARTIO O.Sobolev spaces with zero boundaryvalues on metric spaces[J].Potential Anal,2000,12:233-247. 被引量:1
  • 9KINNUNEN J,MARTIO O.The sobolev capacity on metric spaces[J].Ann Acad Sci,1996,21:367-382. 被引量:1
  • 10KRYLOV N V,SAFONOV M V.Certain properties of solutions of parabolic equations with measurable coeffcients[J].Izv Akad Nauk SSSR,1980,40:161-175. 被引量:1

同被引文献19

  • 1SHANMUGALINGAM N. Harmonic functions on metric spaces[J ] Illinois J Math, 2001,45 : 1021 - 1050. 被引量:1
  • 2KINNUNEN J, SHANMUGALINGAM N. Regularity of quasi-minimizers on metric spaces[J].Springer-Verlag, Manuscripta Math, 2001, 105:401 - 423. 被引量:1
  • 3MIKKO Pere. The eigenvalue problem of the p-Laplacian on metric spaces[M]. Fennica: Academia Scientiarum, 2004. 被引量:1
  • 4KINNUNEN J, MARTIO O. The Sobolev capacity on metric spaces[J]. Ann Acad Sci Fenn, 1996,21:367 - 382. 被引量:1
  • 5SHANMUGALINGAM N. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces[J]. Rev Mat Iberoamericana, 2000, 16 : 243 - 279. 被引量:1
  • 6CHEEGER J. Differentiability of lipschitz functions on metric measure spaces[J]. Geom Funct Anal, 1999,9:428 -527. 被引量:1
  • 7HAJLASZ P, KOSKELA P. Sobolev meets poincare[M]. America: Mem Amer Math, Soc, 2000. 被引量:1
  • 8GIAQUINTA M. Introduction to regularity theory for nonlinear elliptic systems[M]. Zurich: Birkhauser Verlag, 1993. 被引量:1
  • 9KILPELAINEN T, KINNUNEN J, MARTIO O. Sobolev spaces with zero boundary values on metric spaces[J]. Potential Anal, 2000,12; 233 - 247. 被引量:1
  • 10MARCHI S. Holder continuity and Harmack inequality for De Giorgi classes related to.Hgrmader vector fields[J]. Ann Mat Pura Appl, 1995, 168:171 - 188. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部