期刊文献+

基于遗传神经网络和证据理论融合的水电机组振动故障诊断研究 被引量:3

Fault diagnosis of the vibration of turbogenerator units based on GA neural network and evidence theory fusion
下载PDF
导出
摘要 针对水电机组振动故障诊断中的故障误诊、漏诊以及诊断的可靠性低等问题,提出了适用于水电机组的神经网络局部诊断和证据理论融合决策诊断的故障诊断方法。在神经网络中应用遗传算法来提高网络的收敛速度,应用提出的诊断方法对水电机组振动故障进行仿真,诊断结果表明对故障征兆信息的有效组合,充分利用机组各部位的信息,可以减少诊断的误诊、漏诊问题,从而有效地提高诊断的可靠性。应用MATLAB7.0开发出故障诊断系统界面。 Aiming at fault misdiagnosiS, missed diagnosis and low- reliability diagnosis existed in fault diagnosis of the vibration for turbogenerator units, a new fault diagnosis method acceptable for local diagnosis and evidence theory, fusion diagnosis of turbgenerator units is highlighted. The circuital convergence rate is improved with GA method in neural network. Simulating the vibration fault of turbogenerator units with the method presented in the paper, the results show that effective combination of failure symptom infomiation and full utilization of the message existed.in every part of the units can decrease the misdiagnosis and niissed diagnosis of prohlems so as to efficiently enhance the reliability of fault diagnosis. Therefore, MATLAB 7.0 is applied to develop the interface of fault diagnosis system.
作者 刘立峰
出处 《西北水电》 2006年第4期73-76,共4页 Northwest Hydropower
关键词 遗传神经网络 BP学习算法 人工神经网络 水轮发电机组 证据理论 振动 故障诊断 GA neural network BP method artificial neutral mnetwork evidence theory vibration fault diagnosis
  • 相关文献

参考文献8

二级参考文献35

共引文献163

同被引文献28

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部