期刊文献+

基于核鉴别共同矢量的小样本脸像鉴别方法 被引量:1

Face Recognition Based on Kernel Discriminative Common Vectors
下载PDF
导出
摘要 人脸识别中通常存在小样本问题,使得基于Fisher线性鉴别分析的特征抽取方法存在病态奇异问题。近年来针对此问题提出了不同的解决方法,其中基于共同鉴别矢量(DCV)的方法成功克服了已有各种方法存在的缺点,有较好的数值稳定性和较低的计算复杂度。该文将DCV方法推广到非线性领域,将两次Gram-Schmidt正交化过程,转化为只需计算两个核矩阵和进行一次Cholesky分解完成,且得到的非线性Fisher鉴别矢量有标准正交的性质。实验验证了所得KDCV方法的识别性能优于DCV方法。 Face recognition tasks always encounter Small Sample Size (SSS) problem, which leads to the ill-posed problem in Fisher Linear Discriminant Analysis (FLDA). The Discriminative Common Vector (DCV) successfully overcomes this problem for FLDA. In this paper, the DCV is extended to nonlinear case, by performing the Gram-Schmidt orthogonalization twice in feature space, which involving computing two kernel matrices and performing a Cholesky decomposition of a kernel matrix. The experimental results demonstrate that the proposed KDCV achieve better performance than the DCV method.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第12期2296-2300,共5页 Journal of Electronics & Information Technology
基金 南京信息工程大学科研基金资助课题
关键词 人脸识别 鉴别共同矢量 核方法 小样本问题 FISHER线性鉴别分析 Face Recognition, Discriminative Common Vectors, Kemel method, Small Sample Size (SSS) problem, Fisher Linear Discriminant Analysis (FLDA)
  • 相关文献

参考文献10

  • 1Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720. 被引量:1
  • 2Yu H,Yang J.A Direct LDA algorithm for high-dimensional data with application to face recognition.Pattern Recognition,2001,34(10):2067-2070. 被引量:1
  • 3Chen L F,Liao H YM,Ko M T,Lin JC,Yu G J.A new LDA-based face recognition system which can solve the small sample size problem.Pattern Recognition,2000,33(10):1713-1726. 被引量:1
  • 4Huang R,Liu Q,Lu H,Ma S.Solving the small size problem of LDA.Proc.16th Int'l Conf.Pattern Recognition,Quebec City,Que.,Canada,2002,3(8):29-32. 被引量:1
  • 5Cevikalp H,Neamtu M,Wilkes M,Barkana A.Discriminative common vectors for face recognition.IEEE Trans.on Pattern Analysis and Machine Intelligence,2005,27(1):4-13. 被引量:1
  • 6Gülmezoglu M B,Dzhafarov V,Barkana A.The common vector approach and its relation to principal component analysis.IEEE Trans.Speech and Audio Processing,2001,9(6):655-662. 被引量:1
  • 7Shawe-Taylor J,Cristianini N.Kernel Methods for Pattern Analysis.England:Cambridge Univ.Press,2004,Part 2. 被引量:1
  • 8程云鹏.矩阵论[M].西安:西北工业大学出版社,2001,第4章. 被引量:1
  • 9Foley D H,Sammon J W.An optimal set of discriminant vectors.IEEE Trans.on Comput,1975,24(3):281-289. 被引量:1
  • 10Yang J,Jin Z,Yang JY.Essence of kernel Fisher discriminant:KPCA plus LDA.Pattern Recognition,2004,37(10):2097-2100. 被引量:1

同被引文献15

  • 1高秀梅,杨静宇,金忠,陈才扣.基于核的Foley-Sammon鉴别分析与人脸识别[J].计算机辅助设计与图形学学报,2004,16(7):962-967. 被引量:10
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaees Fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence; 1997, 19(7):711-720. 被引量:1
  • 3Chen L F, Liao H Y M, Ko M T, etal. A new LDA-based face recognition system which can solve the small sample size problem [J]. Pattern Recognition, 2000, 33(10): 1713-1726. 被引量:1
  • 4Yu H, Yang J. A direct LDA algorithm for high dimensional data--with application to face recognition [J]. Pattern Recognition, 2001, 34(10): 2067-2070. 被引量:1
  • 5Huang R, Eiu Q S, Lu H Q, etal. Solving the small sample size problem of LDA [C] //Proceedings of the 16th International Conference on Pattern Recognition, Quebec, 2002: 29-32. 被引量:1
  • 6Cevikalp H, Neamtu M, Wilkes M, et al. Discriminative common vectors for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1) 4-13. 被引量:1
  • 7Muller K R, Mika S, Ratsch G, et al. An introduction to kernel based learning algorithms [J]. IEEE Transactions Neural Networks, 2001, 12(2) : 181-201. 被引量:1
  • 8Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C] //Proceedings of IEEE Neural Networks for Signal Processing Workshop, Madison, 1999:41-48. 被引量:1
  • 9Yang J, Jin Z, Yang J Y, et al. Essence of kernel Fisher discriminant: KPCA plus LDA [J]. Pattern Recognition, 2004, 37(10):2097-2100. 被引量:1
  • 10Cevikalp H, Neamtu M, Wilkes M. Discriminative common vector method with kernels [J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1550-1565. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部