期刊文献+

在铝胁迫下黑麦根系分泌的柠檬酸和苹果酸的解毒机制的研究 被引量:7

Studies on Al-detoxification mechanism of both citrate and malate secreted from roots of rye under Al stress
下载PDF
导出
摘要 在我国普遍种植的黑麦(冬牧70),在铝胁迫下其根系能分泌柠檬酸苹果酸复合有机酸。为了揭示在铝胁迫下黑麦根系分泌的复合有机酸(柠檬酸-苹果酸)的解毒机理,研究了上述复合有机酸对铝胁迫下小麦幼根细胞膜透性、过氧化物酶(POD)、过氧化氢酶(CAT)、H^+-ATPase活性和根伸长的影响。结果显示.复合有机酸使小麦幼根电解质渗漏率下降,根尖过氧化物酶、过氧化氧酶、H^+-ATPase活性提高,幼根伸长量增加,并且复合有机酸的效果随其浓度(25~200μmol/L)的增加而增强。在50或100μmol/L苹果酸的基础上,柠檬酸与苹果酸比值(C:M)从1:2增加到1:1,复合有机酸的解毒效果更显著;而在相同柠檬酸浓度下,苹果酸浓度增加一倍对小麦铝毒害无显著影响。可以推断,在铝胁迫环境下,黑麦根系分泌的柠檬酸-苹果酸复合有机酸可以维持细胞膜结构的完整性,减轻自由基伤害和铝对根生长的毒害,并且复合有机酸中柠檬酸的作用强于苹果酸。铝胁迫下根系分泌复合有机酸是黑麦抵御铝毒害的有效机制。 Aluminum (Al) induced secretion of both (Dongmu 70), which is planted widely in China. In order to compound organic acids (citrate and malate) in rye, the citrate and elucidate Al malate from detoxification effects of these organic roots of rye mechanism of acids on root elongation, root cell membrane osmosis, activities of catalase (CAT), peroxidase (POD) and H^+- ATPase of rootapices in Al-sensitive wheat seedlings were studied. The result showed that electrolyte of roots induced by Al was suppressed by addition of both citrate and malate, while an increase in root elongation and activates of CAT, POD, H^+-ATPase were found in the treatments with both citrate and malate under Al stress. These effects of compound organic acids were increased with the increasing of their dose(25-200 μmol/L). An increasing rate of citrate/malate(from 1 : 2 to 1 :1) could depressed Al toxicity more significantly in certain concentra These results indicated that secretion of both citrate and malate tion of malate(50,100 μmol/L). under Al stress was an effective mechanism for rye (Dongmu 70) to deal with Al toxicity to enhance root growth and cell membrane structure integrality, and decrease free radical damage.
机构地区 广西大学农学院
出处 《广西农业生物科学》 CAS CSCD 2006年第4期325-329,340,共6页 Journal of Guangxi Agricultural and Biological Science
基金 国家自然科学基金项目(30360048) 教育部优秀青年教师计划项目(2003[355])
关键词 黑麦 有机酸 小麦 ryc organic acid aluminum wheat
  • 相关文献

参考文献23

  • 1KOCHIAN L V.Cellular mechanisms of aluminum toxicity and resistance in plants[J].Ann Rev Plant Physiol Plant Mol Bio,1995,46:237-260. 被引量:1
  • 2李庆逵.中国红壤[M].北京:科学出版社,1985.. 被引量:11
  • 3FOY C D.The physiology of plant adaptation to mineral stress[J].Iowa State J Res,1983,57:355-392. 被引量:1
  • 4MA J F,RYAN P R,DELHAIZE E.Aluminum tolerance in plants and the complexing role of organic acids[J].Trends in Plant Sci,2001,6:273-278. 被引量:1
  • 5RYAN P R,DELHAIZE E,JONES D L.Function and mechanism of organic anion exudation from plant roots[J].Ann Rev Plant Physiol Plant Mol Bio,2001,52:527-560. 被引量:1
  • 6MA J F,ZHENG S J,MATSUMOTO H,et al.Detoxifying aluminum with buckwheat[J].Nature,1997,390:569-570. 被引量:1
  • 7MA Z,MIYASAKA S C.Oxalate exudation by taro in response to Al[J].Plant Physio,1998,118:861-865. 被引量:1
  • 8PINEROS M A,MAGALHAES J A,ALVES V M C,et al.The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize[J].Plant Physio,2002,129:1194-1206. 被引量:1
  • 9YANG Z M,NIAN H,SIVAGURU M,et al.Characterization of aluminuminduced citrate secretion in aluminum-tolerant soybean (Glycine max L.)[J].Plant Physio Plant,2001,113:64-71. 被引量:1
  • 10YANG Z M,SIVAGURU M,HORST W J,et al.Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max L.)[J].Physio Planta,2000,110:72-77. 被引量:1

二级参考文献22

  • 1[1]Pellet D M,Papernik L A,Kochian L V.Multiple aluminum-resistance mechanisms in wheat[J].Plant Physiol,1996,112:591-597. 被引量:1
  • 2[2]Delhaize E,Craig S,Beaton C D,et al.Aluminum tolerance in wheat(Triticum aestivum L.)I.Uptake and distribution of aluminum in root apices[J].Plant Physiol,1993,103:685-693. 被引量:1
  • 3[3]Miyasaka S C,Buta J G,Howell R K,et al.Mechanism of aluminum tolerance in snapbeans.Root exudation of citric acid[J].Plant Physiol,1991,96:737-743. 被引量:1
  • 4[4]Pellet D M,Grunes D L,Kochian L V.Organic acid exudations an aluminum-tolerance mechanism in maize(Zea mays L.)[J].Planta,1995,196:788-795. 被引量:1
  • 5[5]Ma J F,Ryan P R,Delhaize E.Aluminium tolerance in plants and the complexing role of organic acids[J].Trends in Plant Science,2001,6(6):273-278. 被引量:1
  • 6[6]Ma J F,Hiradate S,Matsumoto H.High aluminum resistance in buckwheat.Ⅱ.Oxalic acid detoxifier aluminum internally[J].Plant Physiol,1998,117:753-759. 被引量:1
  • 7[8]Shen Z,Wang J,Guan H.Effect of aluminum and calcium on growth of wheat seedlings and germination of seeds[J].J plant Nutr,1993,16(11):2135-2148. 被引量:1
  • 8[11]Ryan P R,Ditomaso J M,Kochain L V.Aluminum toxicity in roots:an investigation of spatial sensitive[J].J Exp Bot,1993,44:437-446. 被引量:1
  • 9[12]Ma J F.Role of organic acids in detoxification of Al in Higher Plant[J].Plant Cell Physiol,2000a,44:383-390. 被引量:1
  • 10[13]Ma J F,Taketa S,Yang Z M.Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in Triticale[J].Plant Physiol,2000b,122:687-694. 被引量:1

共引文献175

同被引文献170

引证文献7

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部