期刊文献+

基于单神经元的网络同步补偿算法研究 被引量:9

Study on single neuron compensation method in network synchronization
下载PDF
导出
摘要 如何在大温度变化环境中保证同步系统的高精度同步,已经成为高精度同步面临的主要课题。本文基于IEEE 1588高精度时间同步方式对该课题进行了研究,对IEEE 1588同步方式和实际系统中存在的问题进行了剖析。根据分析结果,针对工厂现场环境中存在的大温度变化情况,提出了采用单神经元插值拟合算法对温度的影响进行补偿,并在大温度变化环境中,对采用不同补偿方式和不采用补偿的设备进行了同步精度测试。测试结果表明,采用单神经元插值拟合算法可以快速有效地补偿温度变化对同步系统产生的漂移,高精度的时间同步。 With rapid development of network technology,the synchronization of different devices in a distributed system is getting more and more important. In many fields, such as motor control, communication system and sequential control systems,high accuracy synehronization is the base of the control systems. In high precision clock synchronization systems, temperature caused drift has a fatal effeet on synchronization accuracy and the synehronization compensation is a major subject to reach higher timing precision. IEEE 1588 and synchronization compensation methods were studied deeply,single neuron compensation and interpolation algorithm were proposed to reduce the influence of large temperature change. The synchronization accuracies for using and not using the above mentioned methods were tested. Test results show that the proposed methods have remarkable effect to reduce temperature caused drift and guarantee higher synchronization precision of the system.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第12期1573-1577,共5页 Chinese Journal of Scientific Instrument
基金 国家"863"计划(2004AA412020) 创新群体(60421002)资助项目
关键词 单神经元 时钟补偿 IEEE 1588 时间同步 线路延时 single neuron clock compensation IEEE 1588 clock synchronization one way delay
  • 相关文献

参考文献8

  • 1IEEE STD.1588-2002,IEEE standard for a precision clock synchronization protocol for networked measurement and control systems[S],2002. 被引量:1
  • 2HIRSCHMANN ELECTRONICS.IEEE 1588-precise time synchronization as the basis for real time applications in automation[J/OL].http://IEEE 1588.nist.gov/,2003. 被引量:1
  • 3张智星等编著,张平安,高春华等译..神经-模糊和软计算[M].西安:西安交通大学出版社,2000:429.
  • 4NARENDRA K S,PARTHASARATHY K.Identification and control of dynamic systems using neural networks[J].IEEE Transactions on Neural Networks,1990,1(1):4-27. 被引量:1
  • 5LEVIN A U,NARENDRA K S.Control of nonlinear dynamical systems using neural networks:controllability and stabilization[J].IEEE Transactions on Neural Networks,1993,4:192-206. 被引量:1
  • 6BRDYS M A,KULAWSKI G J.Dynamic neural controllers for induction motor[J].IEEE Transactions on Neural Networks,1999,10(2):340-355. 被引量:1
  • 7CETIN ELIAS M,A1I AKCAYOL.Genetic PI controller for a permanent magnet synchronous motor[J].Turkish Symposium on Artificial Intelligence and Neural Networks,2003,2(1):39-44. 被引量:1
  • 8MOHL D.IEEE 1588:Running real-time on ethernet[Z].http://ethernet.industrial-networking.com/articles/i17real-time.asp. 被引量:1

同被引文献78

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部