期刊文献+

基于相关性度量的伪主成分分析 被引量:3

Correlation Metric Based Pseudo-Principal Component Analysis
下载PDF
导出
摘要 采用数据样本间的相关性作为相似性度量,并引入样本的类信息,提出一种新的降维方法,即伪主成分分析(Pseudo-PCA),该方法尽可能地保持原样本的变化信息,同时又使得降维后的同类数据样本尽可能保持相似。此外,将这种思想方法成功推广到近年来提出的2DPCA,MatPCA和(2D)2PCA。在ORL,Yale和AR等人脸数据集上的实验表明,该类方法的识别率高于相应的基于欧氏距离的PCA,2DPCA,M atPCA和(2D)2PCA等方法。 A new dimensionality reduction method, called the pseudo-PCA, is proposed, in which the correlation between the samples is taken as the similarity metric. Meanwhile the class information of the samples is incorporated. Pseudo-PCA can preserve the variation information of the samples and enable the data within the same class to be similar to each other. Moreover, the idea of pseudo PCA is generalized to the recently proposed 2DPCA, MatPCA and (2D)^2PCA. Experimental results on ORI., Yale and AR face datasets show that pseudo -PCA, -2DPCA, -MatPCA and -(2D)^2PCA based on the correlation metric outperform PCA, 2DPCA, MatPCA and (2D)^2PCA based on the Euclidian distance.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第6期732-736,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 江苏省自然科学基金(BK2005122)资助项目
关键词 主成分分析 相似性度量 类信息 欧氏距离 人脸识别 principal component analysis (PCA) similarity metric class information Euclidian distance face recognition
  • 相关文献

参考文献12

  • 1Duda R O,Hart P E,Stock D G.Pattern classification[M].2nd edition.New York:John Wiley & Sons,2000. 被引量:1
  • 2Turk M,Pentland A.Eigenface for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86. 被引量:1
  • 3边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 4Wang Liwei,Zhang Yan,Feng Jufu.On the euclidean distance of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1334-1339. 被引量:1
  • 5Vytautas P.Distance measures for PCA-based face recognition[J].Pattern Recognition Letters,2004,25(6):711-724. 被引量:1
  • 6Chen Songcan,Sun Tingkai.Class-information-incorporated principal component analysis[J].Neurocomputing,2005,69(1-3):216-223. 被引量:1
  • 7Yang Jian,Zhang D,Frangi A F,et al.Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137. 被引量:1
  • 8Chen Songcan,Zhu Yulian,Zhang Daoqiang,et al.Feature extraction approaches based on matrix pattern:MatPCA and MatFLDA[J].Pattern Recognition Letters,2005,26(8):1157-1167. 被引量:1
  • 9Zhang Daoqiang,Zhou Zhihua.(2D)2PCA:Two-directional two-dimensional PCA for efficient face representation and recognition[J].Neurocomputing,2005,69(1-3):224-231. 被引量:1
  • 10Wang Liwei,Wang Xiao,Zhang Xuerong,et al.The equivalence of two-dimensional PCA to line-based PCA[J].Pattern Recognition Letters,2005,26(1):57-60. 被引量:1

同被引文献34

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部