期刊文献+

FLUENT软件在园林不规则池塘人工水力循环中的应用 被引量:2

Research on FLUENT in Water Flowing Circulation in Anomaly Garden Water
下载PDF
导出
摘要 以苏州古典园林为依托,运用FLUENT软件计算实施人工水力循环时不规则园林池塘水体的运动规律。计算以人工水力循环的不同工况为背景,得到了池塘水体中的流场计算结果,为实际运行提供依据。 This paper applied FLUENT, a commercial CFD software, to simulate the water flowing driven by a pumping system in anomaly garden water in classical gardens of Suzhou. The results show that under different conditions the calculated findings in water flowing may have a practical significance to guide practice.
出处 《苏州科技学院学报(工程技术版)》 CAS 2006年第4期54-56,共3页 Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金 国家"十五"重大科技专项863项目(2003AA601070) 江苏省"十五"社会发展重点项目(BS2004048)
关键词 FLUENT软件 水力循环 池塘 FLUENT software water flowing circulation garden water
  • 相关文献

参考文献3

二级参考文献40

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393. 被引量:1
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011. 被引量:1
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179. 被引量:1
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293. 被引量:1
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980. 被引量:1
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372. 被引量:1
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136. 被引量:1
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981. 被引量:1
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571. 被引量:1
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989. 被引量:1

共引文献226

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部