摘要
讨论了由慢变化函数形式给出的重尾分布定义,与由指数阶矩形式给出的重尾分布定义是否一致.利用分析中的极限理论等方法,证明了重尾分布的这两种定义是一致的,并给出了重尾分布子族间的相互关系.
This paper discusses whether the varying function and the definitions of heavy-tailed distributions produced by exponential echelon matrix are congruous. The authors have proved that the two types of definitions are congruous by using limit theory, while discussing the correlation among the subclasses of heavy-tailed distributions.
出处
《中北大学学报(自然科学版)》
EI
CAS
2006年第6期475-479,共5页
Journal of North University of China(Natural Science Edition)
基金
山西省自然科学基金资助项目(20031005)
关键词
重尾分布
轻度重尾分布
重度重尾分布
慢变化函数
heavy-tailed distribution
lightly heavy-tailed distribution
heavily heavy-tailed distribu-tion
slow-varying function