期刊文献+

基于TM和LISS3数据的地表反射率反演比较研究 被引量:3

A Comparison Study on Reflectance Retrieval Based on TM and LISS 3 Data
下载PDF
导出
摘要 为定量比较TM和LISS 3数据的反射率反演结果差异,以北京市2005年5月6日的TM数据和2005年5月2日的LISS 3数据为信息源分别进行了地表反射率反演,首先对图像进行了基于图像特征的大气校正,然后对地表反射率进行了反演,并对反演结果进行了比较。结果表明各波段的rmsd值分别为0.030、0.071、0.072和0.078。各个类别的rmsd值分别为0.008、0.087、0.066、0.079和0.056。 In order to compare the reflectance retrieval results obtained from Landsat TM and IRS LISS 3 data respectively, Landsat TM and IRS LISS 3 images of Beijing city acquired on May 6th and May 2nd, 2005 separately were used in this study. Firstly imagebased atmospheric correction was carried out, followed by land surface reflectance computation of Beijing city and a comparison between the two retrieval results was then presented. The results show that the Root Mean Square Deviation (RMSD) for each band is 0. 030, 0. 071,0. 072 and 0. 078 , for each class is 0. 008,0. 087,0. 066 ,0. 079 and 0. 056 respectively.
出处 《遥感信息》 CSCD 2006年第6期55-57,I0005,共4页 Remote Sensing Information
基金 国家自然科学基金(资助号:60272032) 地面站创新项目(资助号:062103)联合资助
关键词 Landsat5 TM IRS LISS 3 北京 反射率 比较 Landsat5 TM IRS LISS 3 Beijing reflectance comparison
  • 相关文献

参考文献10

  • 1池宏康,周广胜,许振柱,肖春旺,袁文平.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80. 被引量:63
  • 2吴昀昭,田庆久,金震宇,张宗贵,惠凤鸣.ETM+数据绝对反射率反演方法分析[J].遥感信息,2004,26(2):9-12. 被引量:20
  • 3李炎,商少凌,张彩云,马晓鑫,黄立伟,吴景瑜,曾银东.基于可见光与近红外遥感反射率关系的藻华水体识别模式[J].科学通报,2005,50(22):2555-2561. 被引量:11
  • 4Sobrino J A,Jiménez-J C,Paolini L.Land surface temperature retrievalfrom LANDSAT TM 5[J].Remote Sensing of Environment,2004,90(4):434~440. 被引量:1
  • 5Chavez P S.Image-based atmospheric correction-revisited and improved[J].Photogrammetric Engineering and Remote Sensing,1996,62(9):1025~1036. 被引量:1
  • 6Van der Meer F.Spectral mixture modeling and spectral stratigraphy in carbonate lithofacies mapping[J].ISPRS Journal of Photogrammetry and Remote Sensing,1996(51):150~162. 被引量:1
  • 7Markham B L,Barker J L.Landsat MSS and TM post-calibration dynamic ranges,exoatmospheric reflectances and at-satellite temperatures[J].EOSAT Landsat Technical Notes,1986,(1):3~8. 被引量:1
  • 8Thenkabail P S.Biophysical and yield imformation for precision farming from near-real-time and historical Landsat TM images[J].International Journal of Remote Sensing,2003,24(14):2879~2904. 被引量:1
  • 9Pandya M R,Singh R P,Murali K R,et al.Bandpass solar exo-atmospheric irradiance and rayleigh optical thickness of sensors onboard Indian remote sensing satellites-1B,1C,1D and P4[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(3):714~718. 被引量:1
  • 10http://www.euromap.de/docs/faq_007.html. 被引量:1

二级参考文献50

  • 1田庆久,张良培,郑兰芬,童庆禧.成像光谱遥感定标模型的分析与评价[J].遥感技术与应用,1996,11(3):16-21. 被引量:13
  • 2彭望禄.遥感数据的计算机处理与地理信息系统[M].北京:北京师范大学,1991.114-115. 被引量:6
  • 3吕斯骅.遥感的物理基础[M].Commercial Press:Beijing,(1981).206-234(inChinese). 被引量:1
  • 4Reich PB (1999). An approach to spatially-distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products. Remote Sensing of Environment, 70, 69-81. 被引量:1
  • 5Roderick M, Smith R, Lodwick G (1996). Calibrating long-term AVHRR-derived NDVI imagery. Remote Sensing of Environment, 58, 1 - 12. 被引量:1
  • 6Sannier CAD, Taylor JC, Plessis WD (2002). Real-time monitoring of vegetation biomass with NOAA-AVHRR in Etosha National Park, Namibia, for fire risk assessment. International Journal of Remote Sensing, 23, 71 - 89. 被引量:1
  • 7Todd SW, Hoffer RM, Milchunas DG (1998). Biomass estimation on grazed and ungrazed rangelands using spectral indices. International Journal of Remote Sensing, 19, 427 - 438. 被引量:1
  • 8Tucker CJ, Townshend JRG (2000). StTategies for monitoring tropical deforestation using satellite data. International Journal of Remote Sensing, 21, 1461 - 1472. 被引量:1
  • 9Belchansky GI, Douglas DC (2002). Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sensing of Enviromnent, 81, 58- 66. 被引量:1
  • 10Chi HK (2003). Practical atmospheric correction of NOAA-AVHRR data using the bare-sand soil line method.International Journal of Remote Sensing, 24, 3369 - 3379. 被引量:1

共引文献90

同被引文献51

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部