期刊文献+

小波变换在微光图像消噪中的应用算法研究 被引量:1

Study of Algorithm for Removing Noise in Low Light Level Image by Using Wavelet Transform
下载PDF
导出
摘要 根据小波变换用于图像消噪的原理,结合微光图像噪声的闪烁颗粒性特点,对小波变换用于微光图像消噪时的小波基及小波分解层次的选取进行了分析,得出采用Haar小波进行一层分解即可满足微光图像消噪要求的结论。为了选取小波消噪的系数阈值,通过对三幅微光图像小波系数的直方图分析,设计了阈值选取算法,并针对微光图像,得出了消噪的经验阈值。经过仿真实验及算法复杂度的时间分析,在实时性和微光图像消噪效果之间取得了平衡。 According to the principle of the wavelet transform for removing noise in images and the glimmer-and-granule characteristics of low light level (LLL) images, the methods for choosing wavelet and decomposing levels when the wavelet transform is used to remove the noise in LLL images are analyzed. A conclusion that the noise removing requirement of LLL images can be met by using Haar wavelet and decomposing one level is reached. To choose the coefficient threshold for removing noise by wavelet transform, three histograms of wavelet coefficients are analyzed and the algorithm for threshold choosing is designed. On the basis of the designed algorithm and the characteristics of LLL images, an experiential threshold for removing noise is obtained. Through the simulation experiment and the time analysis of algorithm complexity, the trade-off between the real-time ability and the effectiveness of removing noise in LLL images is attained.
出处 《红外》 CAS 2006年第12期23-28,共6页 Infrared
关键词 小波变换消噪 微光图像噪声 小波系数阈值 系数直方图 时间复杂度 wavelet transform denoising LLL image noise wavelet coefficient threshold coefficient histogram time complicated degree
  • 相关文献

参考文献11

  • 1KennethRCastleman著 朱志刚等译.数字图像处理[M].北京:电子工业出版社,1998.421--462. 被引量:15
  • 2任获荣,张平,王家礼.一种新的小波图像去噪方法[J].红外与激光工程,2003,32(6):643-646. 被引量:22
  • 3飞思科技产品研发中心编著..MATLAB 6.5辅助小波分析与应用[M].北京:电子工业出版社,2003:283.
  • 4St phane Mallat,杨力华,戴道清,等.信号处理的小波导引.北京:机械工业出版社,2002,331-366. 被引量:1
  • 5D Donoho,I Johnstone.Ideal denoising in an orthonormal basis chosen from a library of bases[J].C R Acad.Sci Paris,Serie Ⅰ,1994,319:1317-1322. 被引量:1
  • 6柏连发.微光图像噪声处理技术研究[M].南京:南京理工大学,1995.. 被引量:3
  • 7WANG Zhou,ZHANG David.Progressive switching median filter for the removal of impulse noise from highly corrupted images[A].IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II:ANALOG AND DIGITAL SIGNAL PROCESSING[C].1999,46(1):78-80. 被引量:1
  • 8Y S Boger,et al.Simple real-time noise removal in intensified low-light-level television images[J].Applied Optics,1992,31(17):3196. 被引量:1
  • 9张长江,付梦印,金梅.基于离散正交小波变换的红外图像去噪方法[J].红外与激光工程,2003,32(4):401-406. 被引量:7
  • 10王炜华,沈振康.用小波变换抑制SAR图像中的斑点噪声[J].红外与激光工程,2002,31(1):14-17. 被引量:4

二级参考文献18

  • 1[1]Frost V S, Stiles J A, Shanmugan K S, et al. A Model for Radar Images and its Application to Adaptive Digital Filtering of Multiplicative Noise[J]. IEEE Trans. on PAMI, 1982, 4(2):157-165. 被引量:1
  • 2[2]Dong Y, Forster B C, Milne A K, et al. Speckle suppression using recursive wavelet transforms[J]. INT. J. Remote Sensing, 1998, 19(2):317-330. 被引量:1
  • 3[3]Fukuda S, Hirosawa H. Suppression of speckle in aperture radar images using wavelet[J]. INT. J. Remote Sensing, 1998, 19(3):507-519. 被引量:1
  • 4[4]Lee J S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics[J]. IEEE Trans. on PAMI, 1980, 2(2). 被引量:1
  • 5Donoho D L. De-noising via soft thresholding. Technical report 409[R]. California:Stanford University, 1992. 被引量:1
  • 6Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425-455. 被引量:1
  • 7Donoho D L. Denoising by soft thresholding [J]. IEEE Transon Information Theory, 1995,41(3):613-627. 被引量:1
  • 8Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data [A]. Inz Proc 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C]. Baltimore, Maryland. 1994,1. A24-A25. 被引量:1
  • 9Chang S G, Bin Yu, Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Trans on Image Processing, 2000,9(9) :1522-1531. 被引量:1
  • 10Donoho D L, Johnstone I M. Wavelet shrinkage., asymptopia?[J]. Journal of the Royal Statistical Society, Series B, 1995,57(2) :301-369. 被引量:1

共引文献46

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部