摘要
研究了小阶数(v,5,2)-OOC码,因为在叠代构造和全面理解(v,5,2)-OOC码时,需要小阶数(v,5,2)-OOC码.利用最大团,给出了最优小阶数(v,5,2)-OOC码的算法,找到了v≤27的(v,5,2)-OOC码,其中大多数达到了Johnson界.
The (v,5,2)-OOCs (optical orthogonal code) with small orders are considered since small OOCs are nee ded in recursive constructions and in obtaining a fuller understanding of existence in general. By applying maximum clique, an algorithmscheme to find optimal (v,5,2)-OOCs of small orders are introduced. The sizes of (v,5,2)- OOCs up to v=27 are determined. Most of them are optimal.
出处
《郑州大学学报(理学版)》
CAS
2006年第4期1-6,共6页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金资助项目,编号10471093
关键词
光正交码
循环3-(v
5
1)设计
最大团问题
optical orthogonal code
cyclic 3- (v, 5,1 ) design
maximal clique problem