期刊文献+

小阶数(v,5,2)-OOC码(英文) 被引量:1

Small Orders of (v,5,2)-OOC
下载PDF
导出
摘要 研究了小阶数(v,5,2)-OOC码,因为在叠代构造和全面理解(v,5,2)-OOC码时,需要小阶数(v,5,2)-OOC码.利用最大团,给出了最优小阶数(v,5,2)-OOC码的算法,找到了v≤27的(v,5,2)-OOC码,其中大多数达到了Johnson界. The (v,5,2)-OOCs (optical orthogonal code) with small orders are considered since small OOCs are nee ded in recursive constructions and in obtaining a fuller understanding of existence in general. By applying maximum clique, an algorithmscheme to find optimal (v,5,2)-OOCs of small orders are introduced. The sizes of (v,5,2)- OOCs up to v=27 are determined. Most of them are optimal.
作者 蒲利群 马骏
出处 《郑州大学学报(理学版)》 CAS 2006年第4期1-6,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目,编号10471093
关键词 光正交码 循环3-(v 5 1)设计 最大团问题 optical orthogonal code cyclic 3- (v, 5,1 ) design maximal clique problem
  • 相关文献

参考文献9

  • 1CHUNG F R K,SALEHI J A,WEI V K.Optical orthogonal codes:design,analysis and applications[J].IEEE Trans Inform Theory,1989,35(3):595-604. 被引量:1
  • 2CHU Wen-song.Optical orthogonal codes and cyclic t-designs[D].University of Southern California,2002. 被引量:1
  • 3CHU Wen-song,COLBOURN C J.Optimal (v,4,2)-OOC of small orders[J].Discrete Mathematics,2004,279(1-3):163-172. 被引量:1
  • 4CHU Wen-song,COLBOURN C J,DUKES P.On constant composition codes[J].Discrete Applied Mathematics,2006,154(6):912-929. 被引量:1
  • 5YIN Jian-xing.Some combinatorial constructions for optical orthogonal codes[J].Discrete Mathematics,1998,185 (1):201-219. 被引量:1
  • 6YIN Jian-xing.A general construction for optimal cyclic packing designs[J].Journal of Combinatorial Theory:Series A,2002,97(1):272-284. 被引量:1
  • 7JULIAN R A,MARCO B.Some progress on (v,4,1) difference families and optical orthogonal codes[J].Journal of Combinatorial Theory:Series A,2004,106 (1):59-75. 被引量:1
  • 8HANANI H.On quadruple systems[J].Canad J Math,1960,12:145-157. 被引量:1
  • 9CHU Wen-song,GOLOMB S W.A new recursive construction for optical orthogonal codes[J].IEEE Transactions on Information Theory,2003,49 (11):3072-3076. 被引量:1

同被引文献10

  • 1Key J D,Seneviratne P. Binary codes from rectangular lattice graphs and permutation decoding[J]. European Journal of Combinatorics, 2007,28 (1) : 121-126. 被引量:1
  • 2Key J D, Seneviratne P. Codes from the line graphs of complete multipartite graphs and PD-sets[J]. Discrete Mathematics, 2007,307 (1): 2217-2225. 被引量:1
  • 3Key J D, Seneviratne P. Permutation decoding for the binary codes from triangular graphs[J]. European Journal of Combinatorics, 2004, 25 (1):113-123. 被引量:1
  • 4Assmus E F, Key J D. Designs and Their Codes[M]. Cambridge: Cambridge University Press, 1992:37-43. 被引量:1
  • 5MaeWilliams F J. Permutation decoding of systematic eodes[J]. Bell System Tech J, 1964, 43 (2):485-505. 被引量:1
  • 6MacWilliams F J, Sloane N J A. The Theory of Error-correcting Codes[M]. Amsterdam: North-Holland, 1998: 1227-1231. 被引量:1
  • 7Huffman W C. Codes and groups[M]//Ptess V S, Huffman W C. Handbook of Coding Theory. Amsterdam: Elsevier, 1988:1345-1440. 被引量:1
  • 8Gordon D M. Minimal permutation sets for decoding the binary Golay codes[J]. IEEE Trans Inform Theory, 1982, 28 (2) : 541-543. 被引量:1
  • 9Schonheim J. On coverings[J]. Pacific J Math, 1964, 14 (4) : 1405-1411. 被引量:1
  • 10赵洪涛,吕新忠.三正则图的Upper减控制数[J].广西师范大学学报(自然科学版),2009,27(4):45-48. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部